Skip to main content

A Faster FPT Algorithm for Finding Spanning Trees with Many Leaves

  • Conference paper
Mathematical Foundations of Computer Science 2003 (MFCS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2747))

Abstract

We describe a new, fast, and fairly simple FPT algorithm for the problem of deciding whether a given input graph G has a spanning tree with at least k leaves. The time complexity of our algorithm is polynomially bounded in the size of G, and its dependence on k is roughly O(9.49k). This is the fastest currently known algorithm for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N.: Transversal numbers of uniform hypergraphs. Graphs and Combinatorics 6, 1–4 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bodlaender, H.L.: On linear time minor tests and depth-first search. Journal of Algorithms 14, 1–23 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Caro, Y., West, D.B., Yuster, R.: Connected domination and spanning trees with many leaves. SIAM Journal on Discrete Mathematics 13, 202–211 (2000)

    Article  MathSciNet  Google Scholar 

  4. Ding, G., Johnson, T., Seymour, P.: Spanning trees with many leaves. Journal of Graph Theory 37, 189–197 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Downey, R., Fellows, M.R.: Parameterized computational feasibility. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 219–244. Birkhäuser, Boston (1995)

    Google Scholar 

  6. Downey, R., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  7. Fellows, M.R., McCartin, C., Rosamond, F.A., Stege, U.: Coordinated kernels and catalytic reductions: An improved FPT algorithm for max leaf spanning tree and other problems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 240–251. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Fellows, M.R., Langston, M.A.: On well-partial-order theory and its applications to combinatorial problems of VLSI design. SIAM Journal on Discrete Mathematics 5, 117–126 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Galbiati, G., Maffioli, F., Morzenti, A.: A short note on the approximability of the maximum leaves spanning tree problem. Information Processing Letters 52, 45–49 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Galbiati, G., Morzenti, A., Maffioli, F.: On the approximability of some maximum spanning tree problems. Theoretical Computer Science 181, 107–118 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and Co, New York (1979)

    MATH  Google Scholar 

  12. Griggs, J.R., Wu, M.: Spanning trees in graphs of minimum degree four or five. Discrete Mathematics 104, 167–183 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM Journal on Discrete Mathematics 4, 99–106 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Linial, N., Sturtevant, D.: Unpublished result (1987)

    Google Scholar 

  15. Lu, H.-I., Ravi, R.: Approximating maximum leaf spanning trees in almost linear time. Journal of Algorithms 29, 132–141 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with the maximum number of leaves. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonsma, P.S., Brueggemann, T., Woeginger, G.J. (2003). A Faster FPT Algorithm for Finding Spanning Trees with Many Leaves. In: Rovan, B., Vojtáš, P. (eds) Mathematical Foundations of Computer Science 2003. MFCS 2003. Lecture Notes in Computer Science, vol 2747. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45138-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45138-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40671-6

  • Online ISBN: 978-3-540-45138-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics