Skip to main content

Theoretical Evaluation of the Detectability of Random Lesions in Bayesian Emission Reconstruction

  • Conference paper
Information Processing in Medical Imaging (IPMI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2732))

Abstract

Detecting cancerous lesion is an important task in positron emission tomography (PET). Bayesian methods based on the maximum a posteriori principle (also called penalized maximum likelihood methods) have been developed to deal with the low signal to noise ratio in the emission data. Similar to the filter cut-off frequency in the filtered backprojection method, the prior parameters in Bayesian reconstruction control the resolution and noise trade-off and hence affect detectability of lesions in reconstructed images. Bayesian reconstructions are difficult to analyze because the resolution and noise properties are nonlinear and object-dependent. Most research has been based on Monte Carlo simulations, which are very time consuming. Building on the recent progress on the theoretical analysis of image properties of statistical reconstructions and the development of numerical observers, here we develop a theoretical approach for fast computation of lesion detectability in Bayesian reconstruction. The results can be used to choose the optimum hyperparameter for the maximum lesion detectability. New in this work is the use of theoretical expressions that explicitly model the statistical variation of the lesion and background without assuming that the object variation is (locally) stationary. The theoretical results are validated using Monte Carlo simulations. The comparisons show good agreement between the theoretical predications and the Monte Carlo results.

This work is supported in part by the National Institute of Biomedical Imaging and Bioengineering under grants R01 EB00363, R01 EB00194, and by the Director, Office of Science, Office of Biological and Environmental Research, Medical Sciences Division, of the U.S. Department of Energy under contract no. DE-AC03-76SF00098.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fessler, J.A.: Penalized weighted least squares image reconstruction for PET. IEEE Trans. Med. Im. 13, 290–300 (1994)

    Article  Google Scholar 

  2. Mumcuoglu, E., Leahy, R., Cherry, S., Zhou, Z.: Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images. IEEE Trans. Med. Im. 13, 687–701 (1994)

    Article  Google Scholar 

  3. Fessler, J.A., Hero, A.O.: Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms. IEEE Trans. Im. Proc. 4, 1417–1429 (1995)

    Article  Google Scholar 

  4. Bouman, C., Sauer, K.: A unified approach to statistical tomography using coordinate descent optimization. IEEE Trans. Im. Proc. 5, 480–492 (1996)

    Article  Google Scholar 

  5. Barrett, H.H., Yao, J., Rolland, J., Myers, K.: Model observers for assessment of image quality. Proc. Natl. Acad. Sci. 90, 9758–9765 (1993)

    Article  Google Scholar 

  6. Barrett, H.H., Wilson, D.W., Tsui, B.M.W.: Noise properties of the EM algorithm: I. theory. Phy. Med. Bio. 39, 833–846 (1994)

    Article  Google Scholar 

  7. Wang, W., Gindi, G.: Noise analysis of MAP-EM algorithms for emission tomography. Phy. Med. Bio. 42, 2215–2232 (1997)

    Article  Google Scholar 

  8. Soares, E.J., Byrne, C., Glick, S.: Noise characterization of block-iterative reconstruction algorithms: 1. theory. IEEE Trans. Med. Im. 19, 261–270 (2000)

    Article  Google Scholar 

  9. Abbey, C.K., Barrett, H.H.: Observer signal-to-noise ratios for the ML-EM algorithm. In: Proceedings of SPIE, vol. 2712, pp. 47–58 (1996)

    Google Scholar 

  10. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Im. 13, 601–609 (1994)

    Article  Google Scholar 

  11. Fessler, J.: Mean and variance of implicitely defined biased estimators (such as penalized maximum likelihood): Applications to tomography. IEEE Trans. Im. Proc. 5, 493–506 (1996)

    Article  Google Scholar 

  12. Fessler, J.A., Rogers, W.L.: Spatial resolution properties of penalized-likelihood image reconstruction: Spatial-invariant tomographs. IEEE Trans. Im. Proc. 9, 1346–1358 (1996)

    Article  Google Scholar 

  13. Qi, J., Leahy, R.M.: A theoretical study of the contrast recovery and variance of MAP reconstructions from PET data. IEEE Trans. Med. Im. 18, 293–305 (1999)

    Article  Google Scholar 

  14. Qi, J., Leahy, R.M.: Resolution and noise properties of MAP reconstruction for fully 3D PET. IEEE Trans. Med. Im. 19, 493–506 (2000)

    Article  Google Scholar 

  15. Stayman, J.W., Fessler, J.A.: Regularization for uniform spatial resolution properties in penalized-likelihood image reconstruction. IEEE Trans. Med. Im. 19, 601–615 (2000)

    Article  Google Scholar 

  16. Bonetto, P., Qi, J., Leahy, R.M.: Covariance approximation for fast and accurate computation of channelized Hotelling observer statistics. IEEE Trans. Nucl. Sci. 47, 1567–1572 (2000)

    Article  Google Scholar 

  17. Qi, J., Huesman, R.H.: Theoretical study of lesion detectability of MAP reconstruction using computer observers. IEEE Trans. Med. Im. 20, 815–822 (2001)

    Article  Google Scholar 

  18. Fessler, J.A., Yendiki, A.: Channelized Hotelling observer performance for penalized-likelihood image reconstruction. In: Proc. IEEE NSS-MIC (2002) (to appear)

    Google Scholar 

  19. Xing, Y., Gindi, G.: Raid calculation of detectability in Bayesian SPECT. In: Proceedings of IEEE International Symposimum on Biomedical Imaging (2002) CDROM

    Google Scholar 

  20. Yavuz, M., Fessler, J.A.: Statistical image reconstruction methods for randomsprecorrected PET scans. Medical Image Analysis 2, 369–378 (1998)

    Article  Google Scholar 

  21. Blake, A., Zisserman, A.: Visual Reconstruction. The MIT Press, Cambridge (1987)

    Google Scholar 

  22. Lee, S.J., Rangarajan, A., Gindi, G.: Bayesian image reconstruction in SPECT using higher oreder mechanical models as priors. IEEE Trans. Med. Im. 14, 669–680 (1995)

    Article  Google Scholar 

  23. Barrett, H.H., Gooley, T., Girodias, K., Rolland, J., White, T., Yao, J.: Linear discriminants and image quality. Image and Vision Computing 10, 451–460 (1992)

    Article  Google Scholar 

  24. Myers, K.J., Barrett, H.H., Borgstrom, M.C., Patton, D.D., Seeley, G.W.: Effect of noise correlation on detectability of disk signals in medical imaging. Journal of the Optical Society of America A 2, 1752–1759 (1985)

    Article  Google Scholar 

  25. Myers, K.J., Barrett, H.H.: Addition of a channel mechanism to the ideal-observer model. Journal of the Optical Society of America A 4, 2447–2457 (1987)

    Article  Google Scholar 

  26. de Vries, D., King, M., Soares, E., Tsui, B., Metz, C.: Effects of scatter subtraction on detection and quantitation in hepatic SPECT. J. Nucl. Med. 40, 1011–1023 (1999)

    Google Scholar 

  27. Yao, J., Barrett, H.H.: Predicting human performance by a channelized Hotelling model. In: Proc. of SPIE, vol. 1768, pp. 161–168 (1992)

    Google Scholar 

  28. Abbey, C.K., Barrett, H.H.: Observer signal-to-noise ratios for the ML-EM algorithm. In: Proc. of SPIE, vol. 2712, pp. 47–58 (1996)

    Google Scholar 

  29. Narayan, T., Herman, G.: Prediction of human observer performance by numerical observers: an experimental study. Journal of Optical Society of America A 16, 679–693 (1999)

    Article  Google Scholar 

  30. Gifford, H., King, M., de Vries, D., Soares, E.: Channelized hotelling and human observer correlation for lesion detection in hepatic SPECT imaging. J. Nucl. Med. 41, 514–521 (2000)

    Google Scholar 

  31. Burgess, A.E., Colborne, E.: Visual signal detection. IV. obserer inconsistency. Journal of Optical Society of America A 5, 617–627 (1988)

    Article  Google Scholar 

  32. Qi, J., Leahy, R.M., Cherry, S.R., Chatziioannou, A., Farquhar, T.H.: High resolution 3D Bayesian image reconstruction using the microPET small animal scanner. Phy. Med. Bio. 43, 1001–1013 (1998)

    Article  Google Scholar 

  33. King, M., de Vries, D., Soares, E.: Comparison of the channelised hotelling and human observers for lesion detection in hepatic SPECT imaging. In: Proc. of SPIE, vol. 3036, pp. 14–20 (1997)

    Google Scholar 

  34. Abbey, C.K., Eckstein, M.P.: Optimal shifted estimates of human-observer templates in two-alternative forced-choice experiments. IEEE Trans. Med. Im. 21, 429–440 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qi, J. (2003). Theoretical Evaluation of the Detectability of Random Lesions in Bayesian Emission Reconstruction. In: Taylor, C., Noble, J.A. (eds) Information Processing in Medical Imaging. IPMI 2003. Lecture Notes in Computer Science, vol 2732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45087-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45087-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40560-3

  • Online ISBN: 978-3-540-45087-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics