Skip to main content

Integrating User Preferences into Evolutionary Multi-Objective Optimization

  • Chapter
Knowledge Incorporation in Evolutionary Computation

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 167))

Summary

Many real-world optimization problems involve multiple, typically conflicting objectives. Often, it is very difficult to weigh the different criteria exactly before alternatives are known. Evolutionary multi-objective optimization usually solves this predicament by searching for the whole Pareto-optimal front of solutions. However, often the user has at least a vague idea about what kind of solutions might be preferred. In this chapter, we argue that such knowledge should be used to focus the search on the most interesting (from a user’s perspective) areas of the Paretooptimal front. To this end, we present and compare two methods which allow to integrate vague user preferences into evolutionary multi-objective algorithms. As we show, such methods may speed up the search and yield a more fine-grained selection of alternatives in the most relevant parts of the Pareto-optimal front.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Branke, T. Kaußler, and H. Schmeck. Guidance in evolutionary multiobjective optimization. Advances in Engineering Software, 32:499–507, 2001.

    Article  MATH  Google Scholar 

  2. C. A. Coello Coello. Handling preferences in evolutionary multiobjective optimization: A survey. In Congress on Evolutionary Computation, volume 1, pages 30–37. IEEE, 2000.

    Google Scholar 

  3. Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont. Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer, 2002.

    Book  MATH  Google Scholar 

  4. Dragan Cvetkovic and Ian C. Parmee. Preferences and their application in evolutionary multiobjective optimisation. IEEE Transactions on Evolutionary Computation, 6(1):42–57, 2002.

    Article  Google Scholar 

  5. K. Deb. Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation Journal, 7(3):205–230, 1999.

    Article  Google Scholar 

  6. K. Deb. Solving goal programming problems using multi-objective genetic algorithms. In Proceedings of Congress on Evolutionary Computation, pages 77–84, 1999.

    Google Scholar 

  7. K. Deb. Multi-objective optimization using evolutionary algorithms. Chichester, UK: Wiley, 2001.

    MATH  Google Scholar 

  8. K. Deb. Multi-objective evolutionary algorithms: Introducing bias among Pareto-optimal solutions. In A. Ghosh and S. Tsutsui, editors, Advances in Evolutionary Computing: Theory and Applications, pages 263–292. London: Springer-Verlag, 2003.

    Google Scholar 

  9. K. Deb and R. B. Agrawal. Simulated binary crossover for continuous search space. Complex Systems, 9(2):115–148, 1995.

    MathSciNet  MATH  Google Scholar 

  10. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

    Article  Google Scholar 

  11. K. Deb and M. Goyal. A robust optimization procedure for mechanical component design based on genetic adaptive search. Transactions of the ASME: Journal of Mechanical Design, 120(2):162–164, 1998.

    Article  Google Scholar 

  12. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable multi-objective optimization test problems. In Proceedings of the Congress on Evolutionary Computation (CEC-2002), pages 825–830, 2002.

    Google Scholar 

  13. C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective optimization: Formulation, discussion, and generalization. In Proceedings of the Fifth International Conference on Genetic Algorithms, pages 416–423, 1993.

    Google Scholar 

  14. Yaochu Jin, Tatsuya Okabe, and Bernhard Sendhoff. Adapting weighted aggregation for multiobjective evolution strategies. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello, and David Corne, editors, Evolutionary Multi-criterion Optimization, number 1993 in LNCS, pages 96–110. Springer, 2001.

    Chapter  Google Scholar 

  15. Yaochu Jin and Bernhard Sendhoff. Fuzzy preference incorporation into evolutionary multi-objective optimization. In Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, volume 1, pages 26–30, Singapore, November 2002.

    Google Scholar 

  16. D. Van Veldhuizen and Gary B. Lamont. Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Evolutionary Computation Journal, 8(2):125–148, 2000.

    Article  Google Scholar 

  17. Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation Journal, 8(2):125–148, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Branke, J., Deb, K. (2005). Integrating User Preferences into Evolutionary Multi-Objective Optimization. In: Jin, Y. (eds) Knowledge Incorporation in Evolutionary Computation. Studies in Fuzziness and Soft Computing, vol 167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44511-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44511-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06174-5

  • Online ISBN: 978-3-540-44511-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics