Skip to main content

Information Theory of Complex Networks: On Evolution and Architectural Constraints

  • Part I Network Structure
  • Chapter
  • First Online:
Complex Networks

Part of the book series: Lecture Notes in Physics ((LNP,volume 650))

Abstract

Complex networks are characterized by highly heterogeneous distributions of links, often pervading the presence of key properties such as robustness under node removal. Several correlation measures have been defined in order to characterize the structure of these nets. Here we show that mutual information, noise and joint entropies can be properly defined on a static graph. These measures are computed for a number of real networks and analytically estimated for some simple standard models. It is shown that real networks are clustered in a well-defined domain of the entropy-noise space. By using simulated annealing optimization, it is shown that optimally heterogeneous nets actually cluster around the same narrow domain, suggesting that strong constraints actually operate on the possible universe of complex networks. The evolutionary implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. R. Albert and A.-L. Barabási. Statistical Mechanics of Complex Networks. Rev. Mod. Phys. 74, 47-97 (2002a).

    Google Scholar 

  • 2. S. N. Dorogovtsev andJ. F. F. Mendes. Evolution of networks. Adv. Phys. 51, 1079-1187 (2002).

    Google Scholar 

  • 3. S. N. Dorogovtsev andJ. F. F. Mendes. Evolution of Networks: from biological nets to the Internet and WWW Oxford U. Press, Oxford (2003).

    Google Scholar 

  • 4. S. Bornholdt and H. G. Schuster, eds. Handbook of Graphs and Networks: From the Genome to the Internet. Springer, Berlin (2002).

    Google Scholar 

  • 5. L. A. N. Amaral, A. Scala, M. Barthélemy and H. E. Stanley. Classes of behavior of small-world networks. Proc. Nat. Acad. Sci. USA 97, 11149-11152 (2000).

    Google Scholar 

  • 6. R. Ferrer, C. Janssen and R. V. Solé. Topology of Technology Graphs: Small World Patterns in Electronic Circuits Physical Review E 64, 32767 (2001).

    Google Scholar 

  • 7. A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science 286, 509-512 (1999).

    Google Scholar 

  • 8. S. N. Dorogovtsev andJ. F. F. Mendes. Accelerated growth of networks, in: Handbook of Graphs and Networks: From the Genome to the Internet, eds. S. Bornholdt and H.G. Schuster. pp. 320-343 Wiley-VCH, Berlin (2002).

    Google Scholar 

  • 9. R. Ferrer and R. V. Solé. Optimization in Complex Networks, Lect. Notes Phys. 625, 114–125 (2003).

    Google Scholar 

  • 10. S. Valverde, R. Ferrer and R. V. Solé. Scale free networks from optimal design Europhys. Lett. 60, 512-517 (2002).

    Google Scholar 

  • 11. R. V. Solé, R. Pastor-Satorras, R., Smith, E.D. and Kepler, T. A model of large-scale proteome evolution. Adv. Complex Systems 5, 43-54 (2002).

    Google Scholar 

  • 12. A. Vazquez, A. Flammini, A. Maritan and A. Vespignani. Modeling of protein interaction networks. Complexus, 1, 38-44 (2002).

    Google Scholar 

  • 13. G. Caldarelli, A. Capocci, P. De Los Rios and M. A. Muñoz. Scale-free networks from varying vertex intrinsic fitness. Phys. Rev. Lett. 89, 258702 (2002).

    Google Scholar 

  • 14. F. Menczer. Growing and navigating the small world web by local content. Proc. Nat. Acad. Sci. USA 99, 14014-14019 (2002).

    Google Scholar 

  • 15. E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai and A.-L. Barabási. Hierarchical Organization of Modularity in Metabolic Networks. Science 297, 1551-1555 (2002).

    Google Scholar 

  • 16. M. E. J. Newman. Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002).

    Google Scholar 

  • 17. E. H. Stanley, S. V. Buldyrev, A. L. Goldberger, Z. D. Goldberger, S. Havlin, R. N. Mantegna, S. M. Ossadnik, C. K. Peng and M. Simon, Statistical mechanics in biology: how ubiquitous are long-range correlations? Physica A205, 214-253 (1996).

    Google Scholar 

  • 18. H. D. Abarbanel, R. Brown, J. L. Sidorowich and L. S. Tsimring. The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65, 1331-1392 (1993).

    Google Scholar 

  • 19. R. B. Ash. Information Theory, Dover, London (1965).

    Google Scholar 

  • 20. C. Adami. Introduction to Artificial Life. Springer, New York (1998).

    Google Scholar 

  • 21. W. Li. Mutual information versus correlation functions. J. Stat. Phys. 60, 823-837 (1990).

    Google Scholar 

  • 22. W. Li. On the relationship between complexity and entropy for Markov chains and regular languages. Complex Syst. 5, 381-399 (1991).

    Google Scholar 

  • 23. A. Fraser and H. Swinney. Independent coordinates for strange attractors from mutual information. Phys. Rev. A33, 1134-1140 (1986).

    Google Scholar 

  • 24. C. Germain-Renaud and J. P. Sansonnet. Ordinateurs massivement paralleles, Armand Colin, Paris (1991).

    Google Scholar 

  • 25. V. M. Milutinovic. Computer Architecture, North Holland, Elsevier (1988).

    Google Scholar 

  • 26. W. D. Hillis. The Connection Machine, MIT Press (Cambridge, MA, 1985).

    Google Scholar 

  • 27. S. Valverde, R. Ferrer and R. V. Solé, Scale-free networks from optimal design. Europhys. Lett. 60, 512-517 (2002).

    Google Scholar 

  • 28. S. A. Kauffman. Origins of Order. Oxford U. Press, New York (1993).

    Google Scholar 

  • 29. R. M. May. Stability and complexity in model ecosystems. Princeton U. Press, New York (1973).

    Google Scholar 

  • 30. S. Amari. Characteristics of random nets of analog neuron-like elements. IEEE Trans. Man and Cybernetics 2, 643-657 (1972).

    Google Scholar 

  • 31. J. M. Montoya and R. V. Solé. Topological properties of food webs: from real data to community assembly models Oikos 102, 614-622 (2003).

    Google Scholar 

  • 32. R. Ferrer and R. V. Solé, Optimization in Complex Networks, Lect. Notes Phys. 625, 114–125 (2003).

    Google Scholar 

  • 33. H. Jeong, S. Mason, A.-L. Barabási and Z. N. Oltvai. Lethality and centrality in protein networks Nature 411, 41 (2001).

    Google Scholar 

  • 34. S. Valverde and R. V. Solé. Hierarchical small worlds in sotfware architecture. Santa Fe Institute Working Paper 03-07-044.

    Google Scholar 

  • 35. C. R. Myers. Software systems as complex networks: structure, function, and evolvability of software collaboration graphs, Phys. Rev. E 68, 046116 (2003).

    Google Scholar 

  • 36. F. Schweitzer, W. Ebeling, H. Rose and O. Weiss. Network Optimization Using Evolutionary Strategies, in: Parallel Problem Solving from Nature - PPSN IV, (Eds. H.-M. Voigt, W. Ebeling, I. Rechenberg, H.-P. Schwefel), Lecture Notes in Computer Science, vol. 1141, Springer, Berlin (1996) pp. 940-949.

    Google Scholar 

  • 37. F. Schweitzer. Brownian Agents and Active Particles. Springer, Berlin (2002).

    Google Scholar 

  • 38. R. V. Solé, R. Ferrer-Cancho, J. M. Montoya and S. Valverde. Selection, tinkering and emergence in complex networks. Complexity 8(1), 20-33 (2002).

    Google Scholar 

  • 39. F. Jacob. Evolution as tinkering. Science 196, 1161-1166 (1976).

    Google Scholar 

  • 40. P. Alberch. The logic of monsters: evidence for internal constraint in development and evolution. Geobios 19, 21-57 (1989).

    Google Scholar 

  • 41. B. C. Goodwin. How the Leopard Changed Its Spots: the Evolution of Complexity. Charles Scribner’s Sons, New York (1994).

    Google Scholar 

  • 42. S. J. Gould. The structure of evolutionary theory. Belknap, Harvard (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eli Ben-Naim Hans Frauenfelder Zoltan Toroczkai

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Solé, R.V., Valverde, S. Information Theory of Complex Networks: On Evolution and Architectural Constraints. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds) Complex Networks. Lecture Notes in Physics, vol 650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44485-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44485-5_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22354-2

  • Online ISBN: 978-3-540-44485-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics