Skip to main content

Boolean Modelingof Genetic Regulatory Networks

  • Part IV Biological Networks
  • Chapter
  • First Online:
Complex Networks

Part of the book series: Lecture Notes in Physics ((LNP,volume 650))

Abstract

Biological systems form complex networks of interaction on several scales, ranging from the molecular to the ecosystem level. On the subcellular scale, interaction between genes and gene products (mRNAs, proteins) forms the basis of essential processes like signal transduction, cell metabolism or embryonic development. Recent experimental advances helped uncover the qualitative structure of many gene control networks, creating a surge of interest in the quantitative description of gene regulation. We give a brief description of the main frameworks and methods used in modeling gene regulatory networks, then focus on a recent model of the segment polarity genes of the fruit fly Drosophila melanogaster.

The basis of this model is the known interactions between the products of the segment polarity genes, and the network topology these interactions form. The interactions between mRNAs and proteins are described as logical (Boolean) functions. The success in reproducing both wild type and mutant gene expression patterns suggests that the kinetic details of the interactions are not essential as long as the network of interactions is unperturbed. The model predicts the gene patterns for cases that were not yet studied experimentally, and implies a remarkable robustness toward changes in internal parameters, initial conditions and even some mutations.

The success of this approach also suggests a wide applicability of real-topology-based Boolean modeling for gene regulatory networks. In cases when the information about the system is incomplete, Boolean modeling can verify the sufficiency of interactions and can propose ways to complete the network. After a coherent picture is obtained, more realistic kinetic models can be used to gain additional insights into the functioning of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. B. Alberts et al., Molecular Biology of the Cell, 4th edn. ( 2003).

    Google Scholar 

  • 2. L. Wolpert, R. Beddington, J. Brockes, T. Jessell, P. Lawrence and E. Meyerowitz, Principles of Development, (Current Biology Ltd., London 1998).

    Google Scholar 

  • 3. E.H. Davidson et al., Science 295, 1669 (2002).

    Google Scholar 

  • 4. S. A. Kauffman, J. Theor. Biol. 22, 437 (1969).

    Google Scholar 

  • 5. S. A. Kauffman, The origins of Order, (Oxford University Press, New York, 1993).

    Google Scholar 

  • 6. B. Derrida and Y. Pomeau, Europhys. Lett. 1, 45 (1986).

    Google Scholar 

  • 7. G. Weisbuch and D. Stauffer, J. Phys. (Paris) 48 11 (1987).

    Google Scholar 

  • 8. B. Luque and R. V. SolĂ©, Phys. Rev. E 55, 257 (1997).

    Google Scholar 

  • 9. R. Albert and A.-L. BarabĂ¡si, Phys. Rev. Lett. 84, 5660 (2000).

    Google Scholar 

  • 10. R. Thomas, J. Theor. Biol. 42, 563 (1973).

    Google Scholar 

  • 11. R. Thomas and R. D’Ari, Biological Feedback (CRC Press, Boca Raton, Ann Arbor, Boston, 1990).

    Google Scholar 

  • 12. L. Mendoza, D. Thieffry and E. R. Alvarez-Buylla, Bioinformatics 15, 593 (1999).

    Google Scholar 

  • 13. L. SĂ¡nchez and D. Thieffry, J. Theor. Biol. 211, 115 (2001).

    Google Scholar 

  • 14. A. Ghysen and R. Thomas, BioEssays 25, 802 (2003).

    Google Scholar 

  • 15. J. W. Bodnar, J. Theor. Biol. 188, 391 (1997).

    Google Scholar 

  • 16. J. W. Bodnar and M. K. Bradley, Cell Biochem. and Biophys. 34, 153 (2001).

    Google Scholar 

  • 17. C.-H. Yuh, H. Bolouri and E. H. Davidson, Development 128, 617 (2001).

    Google Scholar 

  • 18. R. Albert and H. G. Othmer, J. Theor. Biol 223, 1 (2003).

    Google Scholar 

  • 19. J. Reinitz and D. H. Sharp, Mechanisms of Development 49, 133 (1995).

    Google Scholar 

  • 20. G. von Dassow, E. Meir., E. M. Munro and G. M. Odell, Nature 406, 188 (2000).

    Google Scholar 

  • 21. V. V. Gursky, J. Reinitz and A. M. Samsonov, Chaos 11, 132 (2001).

    Google Scholar 

  • 22. P. W. Ingham and A. P. McMahon, Genes Dev. 15, 3059 (2001).

    Google Scholar 

  • 23. B. Sanson, EMBO Reports 2, 1083 (2001).

    Google Scholar 

  • 24. V. Hatini and S. DiNardo, Trends in Genetics 17, 574 (2001).

    Google Scholar 

  • 25. J. E. Hooper and M. P. Scott, The Molecular Genetic Basis of Positional Information in Insect Segments. In: Early Embryonic Development of Animals, ed. by W. Hennig (Springer, Berlin 1992) pp. 1-49.

    Google Scholar 

  • 26. K. M. Cadigan, U. Grossniklaus and W. J. Gehring, Genes Dev. 8, 899 (1994).

    Google Scholar 

  • 27. S. Pfeiffer and J.-P. Vincent, Cell & Dev. Biol. 10, 303 (1999).

    Google Scholar 

  • 28. K. M. Cadigan and R. Nusse, Genes Dev. 11, 3286 (1997).

    Google Scholar 

  • 29. T. Tabata, S. Eaton and T. B. Kornberg, Genes Dev. 6, 2635 (1992).

    Google Scholar 

  • 30. S. Eaton and T. B. Kornberg, Genes. Dev. 4, 1068 (1990).

    Google Scholar 

  • 31. A. Hidalgo and P. Ingham, Development 110, 291-301 (1990).

    Google Scholar 

  • 32. A. M. Taylor, Y. Nakano, J. Mohler and P. W. Ingham, Mechanisms of Development 42, 89 (1993).

    Google Scholar 

  • 33. M. van den Heuvel and P. W. Ingham, Nature 382, 547 (1996).

    Google Scholar 

  • 34. P. W. Ingham, EMBO J. 17, 3505 (1998).

    Google Scholar 

  • 35. P. Aza-Blanc and T. B. Kornberg, Trends in Genetics 15, 458 (1999).

    Google Scholar 

  • 36. J. T. Ohlmeyer and D. Kalderon, Nature 396, 749 (1998).

    Google Scholar 

  • 37. N. MĂ©thot and K. Basler, Cell 96, 819 (1999).

    Google Scholar 

  • 38. C. Alexandre, A. Jacinto and P. W. Ingham, Genes Dev. 10, 2003 (1996).

    Google Scholar 

  • 39. T. von Ohlen and J. E. Hooper, Mechanisms of Development 68, 149 (1997).

    Google Scholar 

  • 40. P. W. Ingham, A. M. Taylor and Y. Nakano, Nature 353, 184 (1991).

    Google Scholar 

  • 41. J. Alcedo, Y. Zou and M. Noll, Molecular Cell 6, 457 (2000).

    Google Scholar 

  • 42. S. DiNardo, E. Sher, J. Heemskerk-Jongens, J. A. Kassis and P. H. O’Farrell, Nature 332, 45 (1988).

    Google Scholar 

  • 43. C. Schwartz, J. Locke, C. Nishida and T. B. Kornberg, Development 121, 1625 (1995).

    Google Scholar 

  • 44. A. Gallet, C. Angelats, S. Kerridge and P. P. ThĂ©rond, Development 127, 5509 (2000).

    Google Scholar 

  • 45. A. Martinez-Arias, N. Baker and P. W. Ingham, Development 103, 157 (1988).

    Google Scholar 

  • 46. A. Bejsovec and E. Wieschaus, Development 119 501 (1993).

    Google Scholar 

  • 47. J. Heemskerk, S. DiNardo, R. Kostriken and P. H. O’Farrell, Nature 352, 404 (1991).

    Google Scholar 

  • 48. A. Bejsovec and A. Martinez-Arias, Development 113, 471 (1991).

    Google Scholar 

  • 49. R. Laubenbacher and B. Stigler, Polynomial models for biochemical networks (preprint, 2003).

    Google Scholar 

  • 50. I. Shmulevich, E. Dougherty and W. Zhang, Proc. IEEE 90, 1778 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eli Ben-Naim Hans Frauenfelder Zoltan Toroczkai

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Albert, R. Boolean Modelingof Genetic Regulatory Networks. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds) Complex Networks. Lecture Notes in Physics, vol 650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44485-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44485-5_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22354-2

  • Online ISBN: 978-3-540-44485-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics