Skip to main content

Coupled Dynamics and Quiescent Phases

  • Chapter
Math Everywhere

Abstract

We analyze diffusively coupled dynamical systems, which are constructed from two dynamical systems in continuous time by switching between the two dynamics. If one of the vector fields is zero we call it a quiescent phase. We present a detailed analysis of coupled systems and of systems with quiescent phase and we prove results on scaling limits, singular perturbations, attractors, gradient fields, stability of stationary points and amplitudes of periodic orbits. In particular we show that introducing a quiescent phase is always stabilizing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Bathia, Matrix Analysis, Springer 1996.

    Google Scholar 

  2. G. Carrero, D. McDonald, E. Crawford, G. de Vries, and M. Hendzel, Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods, 29:14–28, 2003.

    Article  Google Scholar 

  3. K.P. Hadeler, Quiescent phases and stability. submitted.

    Google Scholar 

  4. K.P. Hadeler, The role of migration and contact distribution in epidemic spread. In C. Castillo-Chavez and H.T. Banks, editors, Frontiers Appl. Math., 28, Bioterrorism, pages 188–210. SIAM, 2003.

    Google Scholar 

  5. K.P. Hadeler and M.A. Lewis, Spatial dynamics of the diffusive logistic equation with a sedentary compartment. Canadian Appl. Math. Quart., 10:473–499, 2002.

    MATH  Google Scholar 

  6. T. Hillen, Transport equations with resting phases. Europ. J. Appl. Math., 14:613–636, 2003.

    Article  MATH  Google Scholar 

  7. M.W. Hirsch, H.L. Smith, Monotone dynamical systems. pp. 239–357 In: Handbook of Differential Equations. Ordinary Differential Equations, Vol. 2 (eds. A Cañada, P. Drábek A. Fonda) Elsevier 2005.

    Google Scholar 

  8. R.A. Horn, C. Johnson, Topics in Matrix Analysis. Cambridge U. Press 1994.

    Google Scholar 

  9. W. Jäager, S. Kröomker, and B. Tang, Quiescence and transient growth dynamics in chemostat models. Math. Biosci. 119:225–239, 1994.

    Article  Google Scholar 

  10. C.K.R.T. Jones, Geometric singular perturbation theory. In J. Russell, editor, Dynamical Systems, CIME Lectures Montecatini Terme, Italy, 1994. Lect. Notes Math. 1609, 44–118 1995.

    Google Scholar 

  11. M.A. Lewis and G. Schmitz, Biological invasion of an organism with separate mobile and stationary states: Modeling and analysis. Forma, 11:1–25, 1996.

    MATH  Google Scholar 

  12. T. Malik, H.L. Smith, A resource-based model of microbial quiescence. J. Math. Biol., 53, 231–252, 2006

    Article  MATH  Google Scholar 

  13. M.G. Neubert, P. Klepac, and P. van den Driessche, Stabilizing dispersal delays in predator-prey metapopulation models. Theor. Popul. Biol., 61:339–347, 2002.

    Article  MATH  Google Scholar 

  14. E. Pachepsky, F. Lutscher, R.M. Nisbet, M. Lewis, Persistence, spread and the drift paradox. Theor. Pop. Biol. 67:61–73, 2005.

    Article  MATH  Google Scholar 

  15. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, 1983.

    MATH  Google Scholar 

  16. J.C. Robinson, Infinite-Dimensional Dynamical Systems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  17. B. Tang, Mathematical models of microbial competition in laboratory cultures incorporating environmental heterogeneities: coexistence. Surveys Math. Indust. 3, 49–70, 1993.

    MATH  Google Scholar 

  18. R. Temam, Infinite-Dimensional Dynamical systems in Mechanics and Physics. Springer, 1988.

    Google Scholar 

  19. G. Webb, Structured population dynamics. Mathematical modelling of population dynamics, 123–163, Banach Center Publ., 63, Polish Acad. Sci., Warsaw, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hadeler, K.P., Hillen, T. (2007). Coupled Dynamics and Quiescent Phases. In: Aletti, G., Micheletti, A., Morale, D., Burger, M. (eds) Math Everywhere. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44446-6_2

Download citation

Publish with us

Policies and ethics