Skip to main content

The Minimum Degree Heuristic and the Minimal Triangulation Process

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2880))

Included in the following conference series:

Abstract

The Minimum Degree Algorithm, one of the classical algorithms of sparse matrix computations, is a heuristic for computing a minimum triangulation of a graph. It is widely used as a component in every sparse matrix package, and it is known to produce triangulations with few fill edges in practice, although no theoretical bound or guarantee has been shown on its quality. Another interesting behavior of Minimum Degree observed in practice is that it often results in a minimal triangulation. Our goal in this paper is to examine the theoretical reasons behind this good performance. We give new invariants which partially explain the mechanisms underlying this heuristic. We show that Minimum Degree is in fact resilient to error, as even when an undesirable triangulating edge with respect to minimal triangulation is added at some step of the algorithm, at later steps the chances of adding only desirable edges remain intact. We also use our new insight to propose an improvement of this heuristic, which introduces at most as many fill edges as Minimum Degree but is guaranteed to yield a minimal triangulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amestoy, P., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17, 886–905 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berry, A.: Désarticulation d’un graphe. PhD Dissertation, LIRMM, Montpellier (December 1998)

    Google Scholar 

  3. Berry, A., Blair, J.R.S., Heggernes, P.: Maximum Cardinality Search for Computing Minimal Triangulations. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 1–12. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Berry, A., Bordat, J.-P., Heggernes, P., Simonet, G., Villanger, Y.: A widerange algorithm for minimal triangulation from an arbitrary ordering. Reports in Informatics 243, University of Bergen, Norway, 2003, and Research Report 02-200, LIRRM, Montpellier, France. Submitted to Journal of Algorithms (November 2002)

    Google Scholar 

  5. Blair, J.R.S., Heggernes, P., Telle, J.A.: A practical algorithm for making filled graphs minimal. Theoretical Computer Science 250, 124–141 (2001)

    Article  MathSciNet  Google Scholar 

  6. Dahlhaus, E.: Minimal elimination ordering inside a given chordal graph. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335, pp. 132–143. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  7. Dirac, G.A.: On rigid circuit graphs. Anh. Math. Sem. Univ. Hamburg 25, 71–76 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific. Journal of Math 15, 835–855 (1965)

    MATH  MathSciNet  Google Scholar 

  9. George, J.A., Liu, J.W.H.: The evolution of the minimum degree ordering algorithm. SIAM Review 31, 1–19 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Heggernes, P., Eisenstat, S., Kumfert, G., Pothen, A.: The computational complexity of the Minimum Degree algorithm. In: Proceedings of 14th Norwegian Computer Science Conference, NIK, University of Tromsø, Norway. Also available as ICASE Report 2001-42, NASA/CR-2001-211421, NASA Langley Research Center, USA (2001)

    Google Scholar 

  11. Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum fill-in of asteroidal triple-free graphs. Theoretical Computer Science 175, 309–335 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)

    MATH  MathSciNet  Google Scholar 

  13. Liu, J.W.H.: Equivalent sparse matrix reorderings by elimination tree rotations. SIAM J. Sci. Stat. Comput. 9, 424–444 (1988)

    Article  MATH  Google Scholar 

  14. Markowitz, H.M.: The elimination form of the inverse and its application to linear programming. Management Science 3, 255–269 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  15. Matrix Market Web site, http://math.nist.gov/MatrixMarket/

  16. Ohtsuki, T., Cheung, L.K., Fujisawa, T.: Minimal triangulation of a graph and optimal pivoting order in a sparse matrix. J. Math. Anal. Appl. 54, 622–633 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  17. Parra, A., Scheffler, P.: How to use the minimal separators of a graph for its chordal triangulation. In: Fülöp, Z., Gecseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 123–134. Springer, Heidelberg (1995)

    Google Scholar 

  18. Parter, S.: The use of linear graphs in Gauss elimination. SIAM Review 3, 119–130 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  19. Peyton, B.: Minimal orderings revisited. SIAM J. Matrix Anal. Appl. 23, 271–294 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In: Read, R.C. (ed.) Graph Theory and Computing, pp. 183–217. Academic Press, London (1972)

    Google Scholar 

  21. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  22. Tinney, W.F., Walker, J.W.: Direct solutions of sparse network equations by optimally ordered triangular factorization. Proceedings of the IEEE 55, 1801–1809 (1967)

    Article  Google Scholar 

  23. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth. 2, 77–79 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berry, A., Heggernes, P., Simonet, G. (2003). The Minimum Degree Heuristic and the Minimal Triangulation Process. In: Bodlaender, H.L. (eds) Graph-Theoretic Concepts in Computer Science. WG 2003. Lecture Notes in Computer Science, vol 2880. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39890-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39890-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20452-7

  • Online ISBN: 978-3-540-39890-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics