Skip to main content

Foraging and Resource Allocation Strategies of Mycorrhizal Fungi in a Patchy Environment

  • Chapter
Mycorrhizal Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 157))

Abstract

Foraging for nutrients and carbon are essential components of the mycorrhizal symbiosis. Foraging strategies of mycorrhizal fungi have received little attention compared to the interaction with the plant. Proliferation of hyphae, resource allocation (carbon and nutrients) within a mycelium and spatial distribution of resource capturing structures (internal mycelium for carbon and external mycelium for nutrients) can be considered as foraging strategies. The arbuscular mycorrhizal fungi (AMF) form a uniformly distributed mycelium in soil, but hyphal proliferation occurs in response to several types of organic material and near potential host roots. The ecto-mycorrhizal fungi (EMF) normally form denser hyphal fronts than AMF, and they respond to both organic material and inorganic nutrients by increased growth. This is especially evident for the EMF that form extensive mycelia connected by differentiated hyphal strands, so-called rhizomorphs. We hypothesise that the growth strategy of the AM fungal mycelium reflects an evolution towards optimal search for potential new host roots. The growth strategy of EMF instead seems to reflect evolution towards optimised nutrient capture in competition with other mycelia. Foraging behaviour of mycorrhizal fungi is discussed and we suggest two conceptual models for resource allocation in the mycorrhizal mycelium. These models consider both the internal and the external mycelium and the trade-offs between different foraging strategies of mycorrhizal fungi. From the experimental data available, it is clear that mycorrhizal fungi forage. It needs to be investigated whether observed foraging strategies are optimal for the mycelium as one individual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott LK, Robson AD (1985) The effect of soil pH on the formation of VA mycorrhizas by two species ofGlomus. Aust J Soil Res 23: 253–261

    Article  Google Scholar 

  • Arnebrant K (1994) Nitrogen amendments reduce the growth of extramatrical ectomycorrhizal mycelium. Mycorrhiza 5: 7–15

    Article  CAS  Google Scholar 

  • Baar J, Comini B, Oude Elfererink M, Kuyper TW (1997) Performance of four ecto-myc- orrhizal fungi on organic and inorganic nitrogen sources. Mycol Res 101: 523–529

    Article  Google Scholar 

  • Bago B, Azcon-Aguilar C, Goulet A, Piché Y (1998a) Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytol 139: 375–388

    Article  Google Scholar 

  • Bago B, Azcón-Aguilar C, Piché Y (1998b) Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungusGlomus intraradices grown under monoaxenic conditions. Mycologia 90: 52–62

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Douds Jr DD, Brouillette J, Bécard G, Sachar-Hill Y (1999) Carbon metabolism in spores of the arbuscular mycorrhizal fungusGlomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol 121: 263–271

    Article  PubMed  CAS  Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108: 211–218

    Article  Google Scholar 

  • Begon M, Harper JL, Townsend CR (1990) Ecology: individuals, populations, and communities, 2nd edn. Blackwell, Boston

    Google Scholar 

  • Bending GD, Read DJ (1995a) The structure and function of the vegetative mycelium of ecto-mycorrhizal plants. V. The foraging behaviour of ecto-mycorrhizal mycelium and the translocation of nutrients from exploited organic matter. New Phytol 130: 401–409

    Google Scholar 

  • Bending GD, Read DJ (1995b) The structure and function of the vegetative mycelium of ecto-mycorrhizal plants. VI. Activities of nutrient mobilizing enzymes in birch litter colonized byPaxillus involutus ( Fr.) Fr. New Phytol 130: 411–417

    Google Scholar 

  • Boddy L (1999) Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia 91: 13–32

    Article  Google Scholar 

  • Bolan L (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134: 189–207

    Article  CAS  Google Scholar 

  • Bonello P, Bruns TD, Gardes M (1998) Genetic structure of a natural population of the ecto-mycorrhizal fungusSuillus pungens. New Phytol 138: 533–542

    Article  CAS  Google Scholar 

  • Brand F, Agerer R (1986) Studies on ecto-mycorrhizae VIII Mycorrhizae formed byLac- tarius subdulcis,L. vellerus andLaccaria amethystina in beech. Z Mykol 52: 287–320

    Google Scholar 

  • Brandes B, Godbold DL, Kuhn AJ, Jentschke G (1998) Nitrogen and phosphorus acquisition by the mycelium of the ecto-mycorrhizal fungusPaxillus involutus and its effect on host nutrition. New Phytol 140: 735–743

    Article  CAS  Google Scholar 

  • Bruns TD (1995) Thoughts on the processes that maintain local species diversity of Ectomycorrhizal fungi. Plant Soil 170: 63–73

    Article  CAS  Google Scholar 

  • Carleton TJ, Read DJ (1991) Ecto-mycorrhizas and nutrient transfer in conifer–feather moss ecosystems. Can J Bot 69: 778–785

    Article  Google Scholar 

  • Cairney JWG, Burke RM (1996) Physiological heterogeneity within fungal mycelia: an important concept for a functional understanding of the ecto-mycorrhizal symbiosis. New Phytol 134: 685–695

    Article  Google Scholar 

  • Charnov EL (1976) Optimal foraging: attack strategy of a mantid. Am Nat 110: 141–151

    Article  Google Scholar 

  • Colpaert JV, Van Tichelen KK (1996) Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized by ecto-mycorrhizal or litter-decomposing basidiomycetes. New Phytol 134: 123–132

    Article  Google Scholar 

  • Colpaert JV, Van Assche JA, Luijtens K (1992) The growth of the extramatrical mycelium of ecto-mycorrhizal fungi and the growth response ofPinus sylvestris J. New Phytol 120: 127–135

    Article  Google Scholar 

  • Cooper KM, Lösel DM (1978) Lipid physiology of vesicular-arbuscular mycorrhiza. New Phytol 80: 143–151

    Article  CAS  Google Scholar 

  • Coutts MP, Nicoll BC (1990) Growth and survival of shoots, roots and mycorrhizal mycelium in clonal Sitka spruce during the first growing season after planting. Can J For Res 20: 861–868

    Article  Google Scholar 

  • Cromack K, Sollins P, Graustein WC, Speidel K, Todd AW, Spycher G, Li CY, Todd RL (1979) Calcium oxalate accumulation and soil weathering in mats of hypogeous fungus,Hysterangium crassum. Soil Biol Biochem 11: 463–468

    Article  CAS  Google Scholar 

  • Cui M, Caldwell MM (1996) Facilitation of plant phosphate acquisition by arbuscular mycorrhizas from enriched soil patches. II. Hyphae exploiting root-free soil. New Phytol 133: 461–467

    Google Scholar 

  • Dahlberg A, Stenlid J (1990) Population structure and dynamics inSuillus bovinus as indicated by spatial distribution of fungal clones. New Phytol 115: 487–493

    Google Scholar 

  • De Kroon H, Hutchings MJ (1995) Morphological plasticity in clonal plants: the foraging concept reconsidered. J Ecol 83: 143–152

    Article  Google Scholar 

  • Dighton J (1995) Nutrient cycling in different terrestrial ecosystems in relation to fungi. Can J Bot 73 [Suppl 1]: S1349 - S1360

    Article  Google Scholar 

  • Ek H (1997) The influence of nitrogen fertilization on the carbon economy ofPaxillus involutus in ecto-mycorrhizal association withBetula pendula. New Phytol 135: 133–142

    Article  CAS  Google Scholar 

  • Ekblad A, Wallander H, Carlsson R, Huss-Danell K (1995) Fungal biomass in roots and extramatrical mycelium in relation to macronutrients and plant biomass of ectomycorrhizalPinus sylvestris andAlnus incana. New Phytol 131: 443–451

    Article  Google Scholar 

  • Erland S, Söderström B, Andersson S (1990) Effects of liming on ecto-mycorrhizal fungi infectingPinus sylvestris L. 2. Growth rates in pure culture at different pH values compared to growth rates in symbiosis with the host plant. New Phytol 115: 683–688

    Google Scholar 

  • Finlay RD, Read DJ (1986a) The structure and function of the vegetative mycelium of ecto-mycorrhizal plants I. Translocation of 14C-labelled carbon between plants interconnected by a common mycelium. New Phytol 103: 143–156

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986b) The structure and function of the vegetative mycelium of ecto-mycorrhizal plants II. The uptake and distribution of phosphorus by mycelial strands and interconnecting host plants. New Phytol 103: 157–165

    Google Scholar 

  • Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83: 409–418

    Article  Google Scholar 

  • Gazey C, Abbott LK, Robson AD (1992) The rate of development of mycorrhizas affects the onset of sporulation and production of external hyphae by two species ofAcaulospora. Mycol Res 96: 643–650

    Article  Google Scholar 

  • Giovannetti M, Sbrana C (1998) Meeting a non-host: the behaviour of AM fungi. Mycorrhiza 8: 123–130

    Article  Google Scholar 

  • Giovannetti M, Avio L, Sbrana C, Citernesi S (1993a) Factors affecting appressorium development in the vesicular-arbuscular mycorrhizal fungusGlomus mosseae (Nicol. & Gerd.) Gerd. & Trappe. New Phytol 123: 115–122

    Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993b) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytol 125: 587–593

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Logi C (1994) Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytol 127: 703–709

    Article  Google Scholar 

  • Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis formation and nuclear and protoplasmatic exchange in arbuscular mycorrhizal fungi. Appl Environ Microbiol 65: 5571–5575

    PubMed  CAS  Google Scholar 

  • Green H, Larsen J, Olsson PA, Funck Jensen D, Jakobsen I (1999) Suppression of the bio-control agentTricoderma harzianum by external mycelium of the arbuscular mycorrhizal fungusGlomus intraradices. Appl Environ Microbiol 65: 1428–1434

    PubMed  CAS  Google Scholar 

  • Griffiths RP, Baham JE, Caldwell BA (1994) Soil solution chemistry of ecto-mycorrhizal mats in forest soil. Soil Biol Biochem 26: 331–337

    Article  CAS  Google Scholar 

  • Griffiths RP, Bradshaw GA, Marks B, Lienkaemper GW (1996) Spatial distribution of ecto-mycorrhizal mats in coniferous forests of the Pacific Northwest, USA. Plant Soil 180: 147–158

    Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50: 361–389

    Article  PubMed  CAS  Google Scholar 

  • Hepper CM, Jakobsen I (1983) Hyphal growth from spores of the mycorrhizal fungusGlomus caledonium: effects of amino acids. Soil Biol Biochem 1: 55–58

    Article  Google Scholar 

  • Högberg P, Plamboeck AH, Taylor AFS, Fransson P (1999) Natural 13 C abundance reveals trophic status of fungi and host-origin in mycorrhizal fungi in mixed forests. Proc Natl Acad Sci USA 96: 8534–8539

    Article  PubMed  Google Scholar 

  • Horan DP, Chilvers GA (1990) Chemotropism–the key to ecto-mycorrhizal formation? New Phytol 116: 297–301

    Article  CAS  Google Scholar 

  • Hutchings MJ, De Kroon H (1994) Foraging in plants: the role of morphological plasticity in resource acquisition. Adv Ecol Res 25: 159–238

    Article  Google Scholar 

  • Hutchinson LJ (1999)Lactarius. In: Cairney JWG, Chambers SM (eds) Ecto-mycorrhizal Fungi, key genera in profile. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated withTrifolium subterraneum L. I. Spread of hyphae. New Phytol 120: 371–380

    Google Scholar 

  • Jennings DH, Lysek G (1996) Fungal biology: understanding the fungal lifestyle. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Johansen A (1999) Depletion of soil mineral N by roots ofCucumis sativus L. colonized or not by arbuscular mycorrhizal fungi. Plant Soil 209: 119–127

    Article  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1992) Hyphal transport of 15 N labelled nitrogen by a VA mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol 122: 281–288

    CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1994) Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant Soil 160: 1–9

    CAS  Google Scholar 

  • Joner EJ, Jakobsen I (1995) Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol Biochem 27: 1153–1159

    Article  CAS  Google Scholar 

  • Joner EJ, Magid J, Gahoonia TS, Jakobsen I (1995) P depletion and activity of phosphatases in the rhizosphere of mycorrhizal and non-mycorrhizal cucumber(Cucumis sativus L.). Soil Biol Biochem 27: 1145–1151

    Article  CAS  Google Scholar 

  • Joner EJ, Van Aarle IM, Vosatka M (2000) Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant Soil 226: 199–210

    Article  CAS  Google Scholar 

  • Jones MD, Durall DM, Tinker PB (1998) A comparison of arbuscular and ecto-mycorrhizalEucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytol 140: 125–134

    Article  Google Scholar 

  • Jongmans AG, Van Bremen N, Lundström U, Van Hess PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud R, Olsson M (1997) Rock eating fungi. Nature 389: 682–683

    Article  CAS  Google Scholar 

  • Kling M, Jakobsen I (1998) Arbuscular mycorrhiza in soil quality assessment. Ambio 27: 29–34

    Google Scholar 

  • Larsen J, Jakobsen I (1996) Interactions between a mycophagous Collembola, dry yeast and the external mycelium of an arbuscular mycorrhizal fungus. Mycorrhiza 6: 259–264

    Article  Google Scholar 

  • Larsen J, Olsson PA, Jakobsen I (1998) The use of fatty acid signatures to study mycelial interactions between the arbuscular mycorrhizal fungusGlomus intraradices and the saprophytic fungusFusarium culmorum in root-free soil. Mycol Res 102: 1491–1496

    Article  CAS  Google Scholar 

  • Lewis DH (1991) Fungi and sugars–a suite of interactions. Mycol Res 95: 897–904

    Article  Google Scholar 

  • Lewis DH, Harley JL (1965) Carbohydrate physiology of mycorrhizal roots of beech. II. Utilization of exogenous sugars by uninfected and mycorrhizal roots. New Phytol 64: 224–237

    Google Scholar 

  • Logi C, Sbrana C, Giovannetti M (1998) Cellular events involved in survival of individual arbuscular mycorrhizal symbionts growing in the absence of the host. Appl Environ Microbiol 64: 3473–3479

    PubMed  CAS  Google Scholar 

  • Li X-L, George E, Marschner H (1991a) Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA-mycorrhizal white clover fertilized with ammonium. New Phytol 119: 397–404

    Article  CAS  Google Scholar 

  • Li X-L, Marschner H, George E (199 lb) Acquisition of phosphorus and copper by VA mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136: 49–57

    Google Scholar 

  • Mac Arthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100: 603–609

    Article  Google Scholar 

  • Mahmood S, Finlay RD, Erland S, Wallander H (2001) Solubilisation and colonisation of wood ash by ecto-mycorrhizal fungi isolated from a wood ash fertilised spruce forest. FEMS Microbiol Ecol 35: 151–161

    Article  PubMed  CAS  Google Scholar 

  • Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesiculararbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103: 17–23

    Article  Google Scholar 

  • Miranda JCC, Harris PJ (1994) Effects of soil phosphorus on spore germination and hyphal growth of arbuscular mycorrhizal fungi. New Phytol 128: 103–108

    Article  CAS  Google Scholar 

  • Mosse B (1959) Observations on the extra-matrical mycelium of a vesicular-arbuscular endophyte. Trans Br Mycol Soc 42: 439–448

    Article  Google Scholar 

  • Nylund J-E, Wallander H (1992) Ergosterol analysis as a means of quantifying mycorrhizal biomass. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 24. Academic Press, London, pp 77–88

    Google Scholar 

  • Ogawa M (1985) Ecological characters of ecto-mycorrhizal fungi and their mycorrhizae. JARQ 18: 305–314

    Google Scholar 

  • Olsson PA (1999) Signature fatty acids provide tools for determination of distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29: 303–310

    Article  CAS  Google Scholar 

  • Olsson PA, Johansen A (2000) Lipid and fatty acid composition of hyphae and spores of arbuscular mycorrhizal fungi at different growth stages. Mycol Res 104: 429–434

    Article  CAS  Google Scholar 

  • Olsson PA, Wallander H (1998) Interactions between ecto-mycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiol Ecol 27: 195–205

    Article  CAS  Google Scholar 

  • Olsson PA, Wilhelmsson P (2000) The growth of external AM fungal mycelium in sand dunes and in experimental systems. Plant Soil 226: 161–169

    Article  CAS  Google Scholar 

  • Olsson PA, Bath E, Jakobsen I, Söderström B (1995) The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol Res 99: 623–629

    Article  CAS  Google Scholar 

  • Olsson PA, Bââth E, Jakobsen I and Söderström B (1996a) Soil bacteria respond to presence of roots but not to arbuscular mycorrhizal mycelium. Soil Biol Biochem 28: 463–470

    Article  CAS  Google Scholar 

  • Olsson PA, Chalot M, Bâàth E, Finlay RD, Söderström B (1996b) Ecto-mycorrhizal mycelia reduce bacterial activity in a sandy soil. FEMS Microbiol Ecol 21: 77–86

    Article  CAS  Google Scholar 

  • Olsson PA, Bath E, Jakobsen I (1997) Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures. Appl Environ Microbiol 63: 3531–3538

    PubMed  CAS  Google Scholar 

  • Olsson PA, Thingstrup I, Jakobsen I, Math E (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31: 1879–1887

    Article  CAS  Google Scholar 

  • Olsson S (1995) Mycelial density profiles of fungi on heterogeneous media and their interpretation in terms of nutrient reallocation patterns. Mycol Res 99: 143–153

    Article  Google Scholar 

  • Olsson S, Hansson BS (1995) Action potential-like activity found in fungal mycelia is sensitive to stimulation. Naturwissenschaften 82: 30–31

    Article  CAS  Google Scholar 

  • Paris F, Bonnaud P, Ranger J, Robert M, Lapeyrie F (1995) Weathering of ammonium or calcium-saturated 2:1 phyllosilicates by ecto-mycorrhizal fungi in vitro. Soil Biol Biochem 27: 1237–1244

    Article  CAS  Google Scholar 

  • Pfeffer PE, Douds Jr DD, Bécard G, Shachar-Hill Y (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol 120: 587–598

    Article  PubMed  CAS  Google Scholar 

  • Ravnskov S, Larsen J, Olsson PA, Jakobsen I (1999) Effects of various organic compounds on growth and P uptake of an arbuscular mycorrhizal fungus. New Phytol 141: 517–524

    Article  CAS  Google Scholar 

  • Rayner ADM (1991) The challenge of the individualistic mycelium. Mycologia 83: 48–71

    Article  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47: 376–391

    Article  Google Scholar 

  • Read DJ (1992) The mycorrhizal mycelium. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York

    Google Scholar 

  • Read DJ, Boyd R (1986) Water relations of mycorrhizal fungi and their host plants. In: Ayres P, Boddy L (eds) Water, fungi and plants. Cambridge Univ Press, Cambridge, pp 287–303

    Google Scholar 

  • Ritz K, Crawford J (1990) Quantification of the fractal nature of colonies ofTrichoderma viride. Mycol Res 94: 1138–1152

    Article  Google Scholar 

  • Robinson D, Fitter AH (1999) The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J Exp Bot 50: 9–13

    CAS  Google Scholar 

  • Sinsabaugh RL (1994) Enzymatic analysis of microbial pattern and process. Biol Fertil Soils 17: 69–74

    Article  CAS  Google Scholar 

  • Siqueira JO, Hubbell DH, Mahmud AW (1984) Effect of liming on spore germination, germ tube growth and root colonization by vesicular-arbuscular mycorrhizal fungi. Plant Soil 76: 115–124

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego Stephens DW, Krebs JR ( 1986 ) Foraging theory. Princeton Univ Press, Princeton

    Google Scholar 

  • St John TV, Coleman DC, Reid CPP (1983) Association of vesicular-arbuscular mycorrhizal hyphae with soil organic particles. Ecology 64: 957–959

    Article  Google Scholar 

  • Tommerup IC (1984) Persistence of infectivity by germinated spores of vesicular-arbuscular mycorrhizal fungi in soil. Trans Br Mycol Soc 82: 275–282

    Article  Google Scholar 

  • Tunlid A, Ek H, Westerdahl G, Odham G (1987) Determination of 13C-enrichment in bacterial fatty acids using chemical ionization mass spectromentry with negative ion detection. J Microbiol Methods 7: 77–89

    Article  CAS  Google Scholar 

  • Unestam T (1991) Water repellency, mat formation, and leaf-stimulated growth of some ecto-mycorrhizal fungi. Mycorrhiza 1: 13–20

    Article  Google Scholar 

  • Unestam T, Sun Y-P (1995) Extramatrical structures of hydrophobic and hydrophilic ecto-mycorrhizal fungi. Mycorrhiza 5: 301–311

    Article  Google Scholar 

  • Wallander H (1995) A new hypothesis to explain allocation of dry matter between mycorrhizal fungi and pine seedlings in relation to nutrient supply. Plant Soil 168 /169: 243–248

    Article  Google Scholar 

  • Wallander H (2000a) Uptake of P from apatite byPinus sylvestris seedlings colonised by different ecto-mycorrhizal fungi. Plant Soil 218: 249–256

    Article  CAS  Google Scholar 

  • Wallander H (2000b) Use of strontium isotopes and foliar K content to estimate weathering of biotite induced by pine seedlings colonised by ecto-mycorrhizal fungi from two different soils. Plant Soil 222: 215–229

    Article  CAS  Google Scholar 

  • Wallander H, Nylund J-E (1992) Effects of excess nitrogen and phosphorous starvation on extramatrical mycelium in Scots pine seedlings. New Phytol 120: 495–503

    Article  CAS  Google Scholar 

  • Wallander H, Wickman T (1999) Biotite and micro cline as a K source in mycorrhizal and non-mycorrhizalPinus sylvestris seedlings. Mycorrhiza 9: 25–32

    Article  CAS  Google Scholar 

  • Wallander H, Wickman T, Jacks G (1997) Apatit as a P source in mycorrhizal and nonmycorrhizalPinus sylvestris seedlings. Plant Soil 196: 123–131

    Article  CAS  Google Scholar 

  • Wallenda T, Kottke I (1998) Nitrogen deposition and ecto-mycorrhizas. New Phytol 139: 169–187

    Article  CAS  Google Scholar 

  • Watkins NK, Fitter AH, Graves JD, Robinson D (1996) Carbon transfer between C3 and C4 plants linked by a common mycorrhizal network, quantified using stable carbon isotopes. Soil Biol Biochem 28: 471–477

    Article  CAS  Google Scholar 

  • Wessel JH (1993) Wall growth, protein extraction and morphogenesis in fungi. Tansley review no 45. New Phytol 123: 397–413

    Article  Google Scholar 

  • Wiklund K, Nilsson L-O, Jacobsson S (1995) Effects of irrigation, fertilization, and artificial drought on basidioma production in a Norway spruce stand. Can J Bot 73: 200–208

    Article  Google Scholar 

  • Wright SF; Upadhyaya A (1999) Quantification of arbuscular mycorrhizal fungi activity by the glomalin concentration on hyphal tips. Mycorrhiza 8: 283–285

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Olsson, P.A., Jakobsen, I., Wallander, H. (2002). Foraging and Resource Allocation Strategies of Mycorrhizal Fungi in a Patchy Environment. In: van der Heijden, M.G.A., Sanders, I.R. (eds) Mycorrhizal Ecology. Ecological Studies, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38364-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38364-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00204-8

  • Online ISBN: 978-3-540-38364-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics