Skip to main content

Near-Field Raman Spectroscopy and Imaging

  • Chapter
Applied Scanning Probe Methods V

10.5 Conclusions

In the last decades scanning near-field optical techniques have been the basis for nanometer scale resolution spectroscopy and imaging. Single-molecule detection and identification, on the other hand, is a matter of ongoing active research. Raman spectroscopy can provide unambiguous molecular identification due to the welldefined vibrational energy peaks. However, in order to develop all its potential in nanotechnologies, a spatial resolution beyond the ∼ 200 to 300 nm imposed by the diffraction limit is needed. Combination of Raman spectroscopy with aperture-SNOM is mainly limited by the low light outputs imposed by the fiber optic probes. More recently, the development of SERS and TERS has supplied a huge amplification of Raman scattering due to both the enhanced excitation fields and the exploitation of metal-induced resonant electronic levels. Although the physical and chemical mechanisms underlying these phenomena are not yet fully understood, single-molecule sensitivity and sub-20 nm spatial resolution Raman imaging have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raman CV, Krishnan KS (1928) Nature 121:501

    CAS  Google Scholar 

  2. Raman CV (1928) Nature 121:619

    CAS  Google Scholar 

  3. Porto SPS, Wood DL (1962) J Opt Soc Am 52:251

    CAS  Google Scholar 

  4. Bachelier G, Mlayah A, Cazayous M, Groenen J, Zwick A, Carrere H, Bedel-Pereira E, Arnoult A, Rocher A, Ponchet A (2003) Phys Rev E 67:205325

    Google Scholar 

  5. Maisano G, Majolino D, Mallamace F, Migliardo P, Vasi C, Vanderlingh F, Aliotta F (1986) Mol Phys 57:1083

    CAS  Google Scholar 

  6. Pohl DW, Denk W, Lanz M (1984) Appl Phys Lett 44:651

    Google Scholar 

  7. Lewis A, Isaacson M, Harootunian A, Murray A (1984) Ultramicroscopy 13:227

    Google Scholar 

  8. Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (1991) Science 251:1468

    Google Scholar 

  9. Girard C, Dereux A (1996) Rep Progr Phys 59:657

    CAS  Google Scholar 

  10. Long DA (2002) The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. Wiley, New York

    Google Scholar 

  11. Maker PD, Terhune RW (1965) Phys Rev 137:A801

    Google Scholar 

  12. Shen YR (1984) The Principles of Non-Linear Optics. Wiley, New York

    Google Scholar 

  13. Duncan MD, Reintjes J, Manuccia TJ (1982) Opt Lett 7:350

    CAS  Google Scholar 

  14. Trusso S, Vasi C, Allegrini M, Fuso F, Pennelli G (1999) J Vac Sci Technol B 17:468

    CAS  Google Scholar 

  15. Monsu Scolaro L, Romeo A, Castriciano MA, Micali N (2005) Chem Comm 3018

    Google Scholar 

  16. Micali N, Villari V, Monsu Scolaro L, Romeo A, Catriciano MA (2005) Phys Rev E 72:050401(R)

    Google Scholar 

  17. Stanley HE, Ostrowsky N (1986) On Growth and Form. NATO ASI Series. Nijhoff, Dordrecht

    Google Scholar 

  18. Neri F, Trusso S, Vasi C, Barreca F, Valisa P (1998) Thin Solid Films 332:290

    CAS  Google Scholar 

  19. Abbe E (1873) Arch Mikroskop Anat 9:413

    Google Scholar 

  20. Synge EH (1928) Phil Mag 6:356

    CAS  Google Scholar 

  21. Newton I (1952) Optiks. Dover, New York, based on 4th (1730) edition

    Google Scholar 

  22. Courjon D (2003) Near-Field Microscopy and Near-Field Optics. Imperial College Press, London

    Google Scholar 

  23. Paesler MA, Moyer PJ (1996) Near-Field Optics: Theory, Instrumentation and Applications. Wiley, New York

    Google Scholar 

  24. Allegrini M, Ascoli C, Gozzini A (1971) Opt Commun 2:435

    Google Scholar 

  25. Van Labeke D, Barchiesi D, Baida F (1995) J Opt Soc Am 12:695

    Google Scholar 

  26. Latini G, Downes A, Fenwick O, Ambrosio A, Allegrini M, Daniel C, Silva C, Gucciardi PG, Patanè S, Daik R, Feast WJ, Cacialli F (2005) Appl Phys Lett 86:011102

    Google Scholar 

  27. Gucciardi PG, Patanè S, Ambrosio A, Allegrini M, Downes AD, Latini G, Fenwick O, Cacialli F (2005) Appl Phys Lett 86:203109

    Google Scholar 

  28. Erickson ES, Dunn RC (2005) Appl Phys Lett 87:201102

    Google Scholar 

  29. Ayars EJ, Hallen HD, Jahncke CL (2000) Phys Rev Lett 85:4180

    CAS  Google Scholar 

  30. Toledo-Crow R, Yang PC, Chen Y, Vaez-Iravani M (1992) Appl Phys Lett 60:2957

    CAS  Google Scholar 

  31. Betzig E, Finn PL, Weiner JS (1992) Appl Phys Lett 60:2484

    CAS  Google Scholar 

  32. Karrai K, Grober RD (1995) Appl Phys Lett 66:1842

    CAS  Google Scholar 

  33. Hecht B, Sick B, Wild UP, Deckert V, Zenobi R, Martin OJF, Pohl DW (2000) J Chem Phys 112:7761

    CAS  Google Scholar 

  34. Suh YD, Zenobi R (2000) Adv Mater 12:1139

    CAS  Google Scholar 

  35. Sayah A, Philipona C, Lambelet P, Pfeffer M, Marquis-Weible F (1998) Ultramicroscopy 71:59

    CAS  Google Scholar 

  36. Zeisel D, Nettesheim S, Dutoit B, Zenobi R (1996) Appl Phys Lett 68:2491

    CAS  Google Scholar 

  37. Wolf JF, Hillner PE, Bilewicz R, Kolsch P, Rabe JP (1999) Rev Sci Instrum 70:2751

    CAS  Google Scholar 

  38. Stöckle RM, Fokas C, Deckert V, Zenobi R, Sick B, Hecht B, Wild UP (1999) Appl Phys Lett 75:160

    Google Scholar 

  39. Patanè S, CefalÌ E, Arena A, Gucciardi PG, Allegrini M (2006) Ultramicroscopy 106:475

    Google Scholar 

  40. Oesterschulze E, Rudow O, Mihalcea C, Scholz W, Werner S (1998) Ultramicroscopy 71:99

    Google Scholar 

  41. Veerman JA, Otter AM, Kuipers L, van Hulst NF (1998) Appl Phys Lett 72:3115

    CAS  Google Scholar 

  42. Radojewski J, Grabiec P (2003) Materials Science 21:3

    Google Scholar 

  43. Biagioni P, Polli D, Labardi M, Pucci A, Ruggeri G, Cerullo G, Finazzi M, Duò L (2005) Appl Phys Lett 87:223112

    Google Scholar 

  44. H’Dhili F, Bachelot R, Lerondel G, Barchiesi D, Royer P (2001) Appl Phys Lett 79:10

    Google Scholar 

  45. Gucciardi PG, Trusso S, Vasi C, Patanè S, Allegrini M (2002) Phys Chem Chem Phys 4:2747

    CAS  Google Scholar 

  46. Gucciardi PG, Trusso S, Vasi C, Patanè S, Allegrini M (2003) Appl Opt 42:2724

    CAS  Google Scholar 

  47. Zenhausern F, O’Boyle MP, Wickramasinghe HK (1994) Appl Phys Lett 65:1623; Bachelot R, Gleyzes P, Boccara AC (1995) Opt Lett 20:1924

    CAS  Google Scholar 

  48. Labardi M, Patanè S, Allegrini M (2000) Appl Phys Lett 77:621

    CAS  Google Scholar 

  49. Hillenbrand R, Keilmann F (2000) Phys Rev Lett 85:3029

    CAS  Google Scholar 

  50. Novotny L, Bian RX, Xie XS (1997) Phys Rev Lett 79:645

    CAS  Google Scholar 

  51. Hayazawa N, Saito Y, Kawata S (2004) Appl Phys Lett 85:6239

    CAS  Google Scholar 

  52. Dorn R, Quabis S, Leuchs G (2003) Phys Rev Lett 91:233901

    CAS  Google Scholar 

  53. Ren B, Picardi G, Pettinger B (2004) Rev Sci Instrum 75:837

    CAS  Google Scholar 

  54. Bonera E, Fanciulli M, Mariani M (2005) Appl Phys Lett 87:111913; Piazza F, Grambole D, Zhou L, Talke F, Casiraghi C, Ferrari AC, Robertson J (2004) Diam Relat Mater 13:1505

    Google Scholar 

  55. Jorio A, Saito R, Dresselhaus G, Dresselhaus MS (2004) Phil Trans R Soc Lond A362:2311

    CAS  Google Scholar 

  56. Anastassakis E, Cantarero A, Cardona M (1990) Phys Rev B 41:7529

    CAS  Google Scholar 

  57. Clarke DR, Kroll MC, Kirchner PD, Cook RF, Hockey BJ (1988) Phys Rev Lett 60:2156

    CAS  Google Scholar 

  58. De Wolf I, Maes HE, Jones SK (1996) J Appl Phys 79:7148; De Wolf I, Anastassakis E (1999) J Appl Phys 85:7484

    Google Scholar 

  59. Webster S, Batchelder DN, Smith DA (1998) Appl Phys Lett 72:1478

    CAS  Google Scholar 

  60. Webster S, Smith DA, Batchelder DN (1998) Vib Spectrosc 18:51

    CAS  Google Scholar 

  61. Gucciardi PG, Trusso S, Vasi C, Patanè S, Allegrini M (2003) J Microsc Oxford 209:228

    CAS  Google Scholar 

  62. Gao W, Kahn A (2001) Appl Phys Lett 79:4040

    CAS  Google Scholar 

  63. Blochwitz J, Pfeiffer M, Fritz T, Leo K (1998) Appl Phys Lett 73:729

    CAS  Google Scholar 

  64. Hua ZY, Chen GR (1992) Vacuum 43:1019

    CAS  Google Scholar 

  65. Graja A (1997) Spectroscopy of Materials for Molecular Electronics. Scientific, Poznan

    Google Scholar 

  66. Jahncke CL, Paesler MA, Hallen HD (1995) Appl Phys Lett 67:2483

    CAS  Google Scholar 

  67. Jahncke CL, Hallen HD, Paesler MA (1996) J Raman Spectrosc 27:579

    CAS  Google Scholar 

  68. Higo M, Lu X, Mazur U, Hipps KW (2001) Thin Solid Films 384:90

    CAS  Google Scholar 

  69. Nie S, Emory SR (1997) Science 275:1102

    CAS  Google Scholar 

  70. Fleishmann J, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163

    Google Scholar 

  71. Jeanmarie DL, Van Duyne RP (1977) J Electroanal Chem 84:1

    Google Scholar 

  72. Albrecht MG, Creighton JA (1977) J Am Chem Soc 99:5215

    CAS  Google Scholar 

  73. Moskovits M (1985) Rev Mod Phys 57:783

    CAS  Google Scholar 

  74. Otto A (1984) In: Light Scattering in Solids. Springer, Berlin Heidelberg New York

    Google Scholar 

  75. García-Vidal FJ, Pendry JB (1996) Phys Rev Lett 77:1163

    Google Scholar 

  76. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Phys Rev Lett 78:1667

    CAS  Google Scholar 

  77. Otto A, Mrozek I, Grabhorn H, Akemann W (1992) J Phys Condens Matter 4:1143

    CAS  Google Scholar 

  78. Kneipp K, Wang Y, Kneipp H, Itzkan I, Dasari RR, Feld MS (1996) Phys Rev Lett 76:2444

    CAS  Google Scholar 

  79. Ziesel D, Dutoit B, Deckert V, Roth T, Zenobi R (1997) Anal Chem 69:749

    Google Scholar 

  80. Emory SR, Nie S (1997) Anal Chem 69:2631

    CAS  Google Scholar 

  81. Deckert V, Zeisel D, Zenobi R, Vo-Dinh T (1998) Anal Chem 70:2646

    CAS  Google Scholar 

  82. Hillenbrand R, Keilmann F, Hanarp P, Sutherland DS, Aizpurua J (2003) Appl Phys Lett 83:368

    CAS  Google Scholar 

  83. Wang JJ, Saito Y, Batchelder DN, Kirkham J, Robinson C, Smith DA (2005) Appl Phys Lett 86:263111

    Google Scholar 

  84. Stöckle C, Suh YS, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131

    Google Scholar 

  85. Melmed AJ (1991) J Vac Sci Technol B9:601

    Google Scholar 

  86. Ren B, Picardi G, Pettinger B (2004) Rev Sci Instrum 75:837

    CAS  Google Scholar 

  87. Billot L, Berguiga L, de la Chapelle ML, Gilbert Y, Bachelot R (2005) Eur Phys J Appl Phys 31:139

    CAS  Google Scholar 

  88. Plake T, Ramsteiner M, Grahn HT (2002) Rev Sci Instrum 73:4250

    CAS  Google Scholar 

  89. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Opt Commun 183:2000; Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2001) Chem Phys Lett 335: 369

    Google Scholar 

  90. Hillenbrand R, Taubner T, Keilmann F (2002) Nature 418:159

    CAS  Google Scholar 

  91. Knoll B, Keilmann F (2000) Opt Commun 182:321

    CAS  Google Scholar 

  92. Neacsu CC, Steudle GA, Raschko MB (2005) Appl Phys B 80:295

    CAS  Google Scholar 

  93. Ashino M, Ohtsu M (1998) Appl Phys Lett 72:1299

    CAS  Google Scholar 

  94. Hayazawa N, Saito Y, Kawata S (2005) Appl Phys Lett 85:6239

    Google Scholar 

  95. Kerker M, Wang DS, Chew H (1980) Appl Opt 19:3373

    Article  CAS  Google Scholar 

  96. Jersch J, Demming F, Hildenhagen LJ, Dickmann K (1998) Appl Phys A 66:29

    CAS  Google Scholar 

  97. Demming AL, Festy F, Richards D (2005) J Chem Phys 122:184716

    CAS  Google Scholar 

  98. Hartschuh A, Sanchez EJ, Xie S, Novotny L (2003) Phys Rev Lett 90:095503

    Google Scholar 

  99. Patanè S, Gucciardi PG, Labardi M, Allegrini M (2004) La Rivista del Nuovo Cimento 27:1

    Google Scholar 

  100. Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Phys Rev Lett 92:096101

    Google Scholar 

  101. Iijima S (1991) Nature 354:56

    CAS  Google Scholar 

  102. Anderson N, Hartschuh A, Cronin S, Novotny L (2005) J Am Chem Soc 127:2533

    CAS  Google Scholar 

  103. Venema LC, Wildoer JWG, Janssen JW, Tans SJ, Tuinstra HLJT, Kouwenhoven LP, Dekker C (1999) Science 283:52

    CAS  Google Scholar 

  104. Jorio A, Saito R, Hafner JH, Lieber CM, Hunter M, McClure T, Dresselhaus G, Dresselhaus MS (2001) Phys Rev Lett 86:1118

    CAS  Google Scholar 

  105. Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S (2003) Chem Phys Lett 376:174

    CAS  Google Scholar 

  106. Hartschuh A, Anderson N, Novotny L (2005) J Microscopy 210:234

    Google Scholar 

  107. Hartschuh A, Anderson N, Novotny L (2004) Int J Nanosc 3:371

    CAS  Google Scholar 

  108. Pimenta MA, Marucci A, Empedocles SA, Bawendi MG, Hanlon EB, Rao AM, Eklund PC, Smalley RE, Dresselhaus G, Dresselhaus MS (1998) Phys Rev B 58:16016

    Google Scholar 

  109. Gerton JM, Wade LA, Lessard GA, Ma Z, Quake SR (2004) Phys Rev Lett 93:180801

    Google Scholar 

  110. Knoll B, Keilmann F (1999) Nature 399:134

    CAS  Google Scholar 

  111. Sanchez E, Novotny L, Xie XS (1999) Phys Rev Lett 82:4014

    CAS  Google Scholar 

  112. Bouhelier A, Beversluis M, Hartschuh A, Novotny L (2003) Phys Rev Lett 90:013903

    CAS  Google Scholar 

  113. Neacsu CC, Reider GA, Raschke MB (2005) Phys Rev B 71:201402

    Google Scholar 

  114. Labardi M, Allegrini M, Zavelani-Rossi M, Polli D, Cerullo G, De Silvestri S, Svelto O (2004) Opt Lett 29:62

    CAS  Google Scholar 

  115. Gucciardi PG, Princi P, Pisani A, Favaloro A, Cutroneo G (2005) J Kor Phys Soc 47:S86

    CAS  Google Scholar 

  116. Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S (2004) Appl Phys Lett 84:1768

    CAS  Google Scholar 

  117. Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S (2004) Phys Rev Lett 92:220801

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gucciardi, P.G., Trusso, S., Vasi, C., Patanè, S., Allegrini, M. (2007). Near-Field Raman Spectroscopy and Imaging. In: Bhushan, B., Kawata, S., Fuchs, H. (eds) Applied Scanning Probe Methods V. NanoScience and Technology. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-37316-2_10

Download citation

Publish with us

Policies and ethics