Skip to main content

Interpretability Improvements to Find the Balance Interpretability-Accuracy in Fuzzy Modeling: An Overview

  • Chapter
Interpretability Issues in Fuzzy Modeling

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 128))

Abstract

Abstract System modeling with fuzzy rule-based systems (FRBSs), i.e. fuzzy modeling (FM), usually comes with two contradictory requirements in the obtained model: the interpretability, capability to express the behavior of the real system in an understandable way, and the accuracy, capability to faithfully represent the real system. While linguistic FM (mainly developed by linguistic FRBSs) is focused on the interpretability, precise FM (mainly developed by Takagi-Sugeno-Kang FRBSs) is focused on the accuracy. Since both criteria are of vital importance in system modeling, the balance between them has started to pay attention in the fuzzy community in the last few years.

The chapter analyzes mechanisms to find this balance by improving the interpretability in linguistic FM: selecting input variables, reducing the fuzzy rule set, using more descriptive expressions, or performing linguistic approximation; and in precise FM: reducing the fuzzy rule set, reducing the number of fuzzy sets, or exploiting the local description of the rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Alcalá, J. Casillas, O. Cordon, and F. Herrera. Building fuzzy graphs: features and taxonomy of learning for non-grid-oriented fuzzy rule-based systems. To appear in Journal of Intelligent and Fuzzy Systems. Draft version available at http://decsai.ugr.es/~casillas/.

  2. R. Babuška. Fuzzy modeling for control. Kluwer Academic, Norwell, MA, USA, 1998.

    Book  Google Scholar 

  3. R. Babuška, H. Bersini, D.A. Linkens, D. Nauck, G. Tselentis, and O. Wolkenhauer. Future prospects for fuzzy systems and technology. ERUDIT Newsletter Vol. 6, No. 1 . Aachen, Germany, 2000. Available at http://www.erudit.de/erudit/newsletters/news_61/page5.htm.

    Google Scholar 

  4. A. Bastian. How to handle the flexibility of linguistic variables with applications. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2(4):463–484, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Bikdash. A highly interpretable form of Sugeno inference systems. IEEE Transactions on Fuzzy Systems, 7(4686–696, 1999.

    Article  Google Scholar 

  6. P. Carmona, J.L. Castro, and J.M. Zurita. Learning maximal structure fuzzy rules with exceptions. In Proceedings of the 2nd International Conference in Fuzzy Logic and Technology, pages 113–117, Leicester, UK, 2001.

    Google Scholar 

  7. B. Carse, T.C. Fogarty, and A. Munro. Evolving fuzzy rule based controllers using genetic algorithms. Fuzzy Sets and Systems, 80:273–294, 1996.

    Article  Google Scholar 

  8. J. Casillas, O. Cordon, M.J. del Jesus, and F. Herrera. Genetic feature selection in a fuzzy rule-based classification system learning process for high dimensional problems. Information Sciences, 136(1–4):169–191, 2001.

    Google Scholar 

  9. J. Casillas, O. Cordon, and F. Herrera. Can linguistic modeling be as accurate as fuzzy modeling without losing its description to a high degree? Technical Report #DECSAI-00–01–20, Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain, 2000. Available at http://decsai.ugr.es/~casillas/.

    Google Scholar 

  10. J.L. Castro, J.J. Castro-Schez, and J.M. Zurita. Learning maximal structure rules in fuzzy logic for knowledge acquisition in expert systems. Fuzzy Sets and Systems, 101(3):331–342, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  11. J.L. Castro, C.J. Mantas, and J.M. Benítez. Interpretation of artificial neural networks by means of fuzzy rules. IEEE Transactions on Neural Networks, 13(1):101–116, 2002.

    Article  Google Scholar 

  12. Z. Chi, H. Yan, and T. Pham. Fuzzy algorithms with application to image processing and pattern recognition. World Scientific, Singapore, 1996.

    Google Scholar 

  13. W.E. Combs and J.E. Andrews. Combinatorial rule explosion eliminated by a fuzzy rule configuration. IEEE Transactions on Fuzzy Systems, 6(1):1–11, 1998.

    Article  Google Scholar 

  14. M.G. Cooper and J.J. Vidal. Genetic design of fuzzy controllers: the cart and jointed pole problem. In Proceedings of the 3rd IEEE International Conference on Fuzzy Systems, pages 1332–1337, Piscataway, NJ, USA, 1994.

    Google Scholar 

  15. O. Cordón and F. Herrera. A three-stage evolutionary process for learning descriptive and approximate fuzzy logic controller knowledge bases from examples. International Journal of Approximate Reasoning, 17(4):369–407, 1997.

    Article  MATH  Google Scholar 

  16. O. Cordón and F. Herrera. A proposal for improving the accuracy of linguistic modeling. IEEE Transactions on Fuzzy Systems, 8(3):335–344, 2000.

    Article  Google Scholar 

  17. D. Driankov, H. Hellendoorn, and M. Reinfrank. An introduction to fuzzy control. Springer-Verlag, Heidelberg, Germany, 1993.

    Book  MATH  Google Scholar 

  18. A. Dvořák. On linguistic approximation in the frame of fuzzy logic deduction. Soft Computing, 3(2):111–116, 1999.

    Article  Google Scholar 

  19. F. Eshragh and E.H. Mamdani. A general approach to linguistic approximation. In E.H. Mamdani and B.R. Gaines, editors, Fuzzy Reasoning and its Applications, pages 169–187. Academic Press, London, UK, 1981.

    Google Scholar 

  20. A. Fiordaliso. Autostructuration of fuzzy systems by rules sensitivity analysis. Fuzzy Sets and Systems, 118(2):281–296, 2001.

    Article  MathSciNet  Google Scholar 

  21. A. Fiordaliso. A constrained Takagi-Sugeno fuzzy system that allows for better interpretation and analysis. Fuzzy Sets and Systems, 118(2):307–318, 2001.

    Article  MathSciNet  Google Scholar 

  22. B. Fritzke. Incremental neuro-fuzzy systems. In B. Bosacchi, J.C. Bezdek, and D.B. Fogel, editors, Proceedings of the International Society for Optical Engineering: Applications of Soft Computing, volume 3165, pages 86–97, 1997.

    Google Scholar 

  23. A.F. Gómez-Skarmeta and F. Jiménez. Fuzzy modeling with hybrid systems. Fuzzy Sets and Systems, 104(2):199–208, 1999.

    Article  Google Scholar 

  24. A. Gonzá and R. Pérez. Completeness and consistency conditions for learning fuzzy rules. Fuzzy Sets and Systems, 96(1):37–51, 1998.

    Article  MathSciNet  Google Scholar 

  25. A. Gonzá and R. Pérez. SLAVE: a genetic learning system based on an iterative approach. IEEE Transactions on Fuzzy Systems, 7(2):176–191, 1999.

    Article  Google Scholar 

  26. A. González and R. Pérez. Selection of relevant features in a fuzzy genetic learning algorithm. IEEE Transactions on Systems, Man, and CyberneticsPart B: Cybernetics, 31(3):417–425, 2001.

    Article  Google Scholar 

  27. S. Guillaume. Designing fuzzy inference systems from data: an interpretabilityoriented review. IEEE Transactions on Fuzzy Systems, 9(3):426–443, 2001.

    Article  MathSciNet  Google Scholar 

  28. K.M. Hangos, editor. Special issue on grey box modelling, volume 9(6) of International Journal of Adaptive Control and Signal Processing. John Wiley & Sons, New York, NY, USA, 1995.

    Google Scholar 

  29. F. Herrera, M. Lozano, and J.L. Verdegay. A learning process for fuzzy control rules using genetic algorithms. Fuzzy Sets and Systems, 100:143–158, 1998.

    Article  Google Scholar 

  30. T.-P. Hong and J.-B. Chen. Finding relevant attributes and membership functions. Fuzzy Sets and Systems, 103(3):389–404, 1999.

    Article  Google Scholar 

  31. T.-P. Hong and C.-Y. Lee. Effect of merging order on performance of fuzzy induction. Intelligent Data Analysis, 3(2):139–151, 1999.

    Article  MATH  Google Scholar 

  32. H. Ishibuchi, T. Murata, and I.B. Türkşen. Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems. Fuzzy Sets and Systems, 89(2):135–150, 1997.

    Article  Google Scholar 

  33. H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka. Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Transactions on Fuzzy Systems, 3(3):260–270, 1995.

    Article  Google Scholar 

  34. Y. Jin. Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement. IEEE Transactions on Fuzzy Systems, 8(2):212–221, 2000.

    Article  Google Scholar 

  35. A. Klose, A. Nurnberger, and D. Nauck. Some approaches to improve the interpretability of neuro-fuzzy classifiers. In Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing, pages 629–633, Aachen, Germany, 1998.

    Google Scholar 

  36. L. Koczy. Fuzzy if ... then rule models and their transformation one another. IEEE Transactions on Systems, Man, and Cybernetics, 26(5):621–637, 1996.

    Article  Google Scholar 

  37. A. Krone and H. Kiendl. Automatic generation of positive and negative rules for two-way fuzzy controllers. In Proceedings of the Second European Congress on Intelligent Techniques and Soft Computing, volume 1, pages 438–447, Aachen, Germany, 1994. Verlag Mainz.

    Google Scholar 

  38. A. Krone, P. Krause, and T. Slawinski. A new rule reduction method for finding interpretable and small rule bases in high dimensional search spaces. In Proceedings of the 9th IEEE International Conference on Fuzzy Systems, pages 693–699, San Antonio, TX, USA, 2000.

    Google Scholar 

  39. A. Krone and H. Taeger. Data-based fuzzy rule test for fuzzy modelling. Fuzzy Sets and Systems, 123(3):343–358, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  40. H.-M. Lee, C.-M. Chen, J.-M. Chen, and Y.-L. Jou. An efficient fuzzy classifier with feature selection based on fuzzy entropy. IEEE Transactions on Systems, Man, and Cybernetics-PartB:Cybernetics, 31(3):426–432, 2001.

    Google Scholar 

  41. P. Lindskog. Fuzzy identification from a grey box modeling point of view. In H. Hellendoorn and D. Driankov, editors, Fuzzy model identification, pages 3–50. Springer-Verlag, Heidelberg, Germany, 1997.

    Chapter  Google Scholar 

  42. L. Magdalena. Adapting the gain of an FLC with genetic algorithms. International Journal of Approximate Reasoning, 17(4):327–349, 1997.

    Article  MATH  Google Scholar 

  43. L. Magdalena and F. Monasterio-Huelin. A fuzzy logic controller with learning through the evolution of its knowledge base. International Journal of Approximate Reasoning, 16(3):335–358, 1997.

    Article  MATH  Google Scholar 

  44. E.H. Mamdani. Applications of fuzzy algorithms for control a simple dynamic plant. Proceedings of the IEE121, 12:1585–1588, 1974.

    Google Scholar 

  45. E.H. Mamdani and S. Assilian. An experiment in linguistic systhesis with fuzzy logic controller. International Journal of Man-Machine Studies, 7:1–13, 1975.

    Article  MATH  Google Scholar 

  46. J.G. Marín-Blázquez, Q. Shen, and A.F. Gómez-Skarmeta. From approximative to descriptive models. In Proceedings of the 9th IEEE International Conference on Fuzzy Systems, pages 829–834, San Antonio, TX, USA, 2000.

    Google Scholar 

  47. P.A. Mastorocostas, J.B. Theocharis, and V.S. Petridis. A constrained orthogonal least-squares method for generating TSK fuzzy models: application to short-term load forecasting. Fuzzy Sets and Systems, 118(2):215–233, 2001.

    Article  MathSciNet  Google Scholar 

  48. C.C. Mouzouris and J.M. Mendel. A singular-value-QR decomposition based method for training fuzzy logic systems in uncertain environments. Journal of Intelligent and Fuzzy Systems, 5:367–374, 1997.

    Google Scholar 

  49. W. Pedrycz, editor. Fuzzy modelling: paradigms and practice. Kluwer Academic, Norwell, MA, USA, 1996.

    MATH  Google Scholar 

  50. A. Riid and E. Rüstern. Interpretability versus adaptability in fuzzy systems. Proceedings of the Estonian Academy of Sciences. Engineering, 49(2):76–95, 2000.

    Google Scholar 

  51. H. Roubos and M. Setnes. Compact and transparent fuzzy models and classifiers through iterative complexity reduction. IEEE Transactions on Fuzzy Systems, 9(4):516–524, 2001.

    Article  Google Scholar 

  52. M. Setnes, R. Babuška, U. Kaymak, and H.R. van Nauta Lemke. Similarity measures in fuzzy rule base simplification. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 28(3):376–386, 1998.

    Article  Google Scholar 

  53. M. Setnes, R. Babuška, and H.B. Verbruggen. Complexity reduction in fuzzy modeling. Mathematics and Computers in Simulation, 46(5–6):509–518, 1998.

    Google Scholar 

  54. M. Setnes, R. Babuška, and H.B. Verbruggen. Rule-based modeling: precision and transparency. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 28(1):165–169, 1998.

    Article  Google Scholar 

  55. M. Setnes and H. Hellendoorn. Orthogonal transforms for ordering and reduction of fuzzy rules. In Proceedings of the 9th IEEE International Conference on Fuzzy Systems, pages 700–705, San Antonio, TX, USA, 2000.

    Google Scholar 

  56. M. Setnes and H. Roubos. GA-fuzzy modeling and classification: complexity and performance. IEEE Transactions on Fuzzy Systems, 8(5):509–522, 2000.

    Article  Google Scholar 

  57. L.I.U. Shi-Rong and Y.U. Jin-Shou. Model construction optimization for a class of fuzzy models. Chinese Journal of Computers, 24(2):164–172, 2001.

    Google Scholar 

  58. R. Silipo and M. Berthold. Discriminative power of input features in a fuzzy model. In D. Hand, J. Kok, and M. Berthold, editors, Advances in Intelligent Data Analysis (IDA-99), volume LNCS 1642, pages 87–98. Springer-Verlag, Heidelberg, Germany, 1999.

    Chapter  Google Scholar 

  59. R. Silipo and M. Berthold. Input features’ impact on fuzzy decision processes. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 30(6):821–834, 2000.

    Article  Google Scholar 

  60. T. Söderström and P. Stoica. System identification. Prentice Hall, Engleweed Cliffs, NJ, USA, 1989.

    MATH  Google Scholar 

  61. T. Sudkamp, J. Knapp, and A. Knapp. Refine and merge: generating small bases from training data. In Proceedings of the 9th IFSA World Congress and the 20th NAFIPS International Conference, pages 197–202, Vancouver, Canada, 2001.

    Google Scholar 

  62. M. Sugeno and G.T. Kang. Structure identification of fuzzy model. Fuzzy Sets and Systems, 28:15–33, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  63. M. Sugeno and T. Yasukawa. A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems, 1(1):7–31, 1993.

    Article  Google Scholar 

  64. T. Takagi and M. Sugeno. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15:116–132, 1985.

    Article  MATH  Google Scholar 

  65. J. Valente de Oliveira. Semantic constraints for membership function optimization. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 29(1):128–138, 1999.

    Article  Google Scholar 

  66. L.-X. Wang and J.M. Mendel. Fuzzy basis functions, universal approximation, and orthogonal least squares learning. IEEE Transactions on Neural Networks, 3:807–814, 1992.

    Article  Google Scholar 

  67. X. Wang and J. Hong. Learning optimization in simplifying fuzzy rules. Fuzzy Sets and Systems, 106(3):349–356, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  68. N. Xiong and L. Litz. Fuzzy modeling based on premise optimization. In Proceedings of the 9th IEEE International Conference on Fuzzy Systems, pages 859–864, San Antonio, TX, USA, 2000.

    Google Scholar 

  69. Y. Yam, P. Baranyi, and C.-T. Yang. Reduction of fuzzy rule base via singular value decomposition. IEEE Transactions on Fuzzy Systems, 7(2):120–132, 1999.

    Article  Google Scholar 

  70. J. Yen and L. Wang. An SVD-based fuzzy model reduction strategy. In Proceedings of the 5th IEEE International Conference on Fuzzy Systems, pages 835–841, New Orleans, LA, USA, 1996.

    Google Scholar 

  71. J. Yen and L. Wang. Application of statistical information criteria for optimal fuzzy model construction. IEEE Transactions on Fuzzy Systems, 6(3):362–372, 1998.

    Article  Google Scholar 

  72. J. Yen and L. Wang. Simplifying fuzzy rule-based models using orthogonal transformation methods. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 29(1):13–24, 1999.

    Article  Google Scholar 

  73. J. Yen, L. Wang, and C.W. Gillespie. Improving the interpretability of TSK fuzzy models by combining global learning and local learning. IEEE Transactions on Fuzzy Systems, 6(4):530–537, 1998.

    Article  Google Scholar 

  74. W. Yu and Z. Bien. Design of fuzzy logic controller with inconsistent rule base. Journal of Intelligent and Fuzzy Systems, 2:147–159, 1994.

    Google Scholar 

  75. L.A. Zadeh. Outline of a new approach to the analysis of complex systems and desision processes. IEEE Transactions on Systems, Man, and Cybernetics, 3:28–44, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  76. L.A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning. Parts I, II and III. Information Science, 8, 9:199–249, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  77. L.A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning. Parts I, II and III. Information Science, 8, 9:301–357, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  78. L.A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning. Parts I, II and III. Information Science, 8, 9:43–80, 1975.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (2003). Interpretability Improvements to Find the Balance Interpretability-Accuracy in Fuzzy Modeling: An Overview. In: Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (eds) Interpretability Issues in Fuzzy Modeling. Studies in Fuzziness and Soft Computing, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37057-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37057-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05702-1

  • Online ISBN: 978-3-540-37057-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics