Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 88))

Abstract

Nature is profligate in the way it uses light and colour. As the principle component of inter and intra-species communication, light supports stimuli associated with courtship, crypsis, predation, feeding and a wide range of other biological functions. Light is believed to be the stimulus behind the Cambrian explosion; the sudden and enormous diversification of life that accompanied the start of the Cambrian period over 500 million years ago. Evidence from this era suggests that the co-development of predator and prey colouration, concurrently with their visual systems, led to an explosion in evolution of lifeforms (Parker 1998, 1999). Light is believed to drive significant selection pressures that have been responsible for the subsequent development of all life; creating the astonishing diversity of photonic systems that are present in the world today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles F (1950) Recherches sur las propagation des ondes electromagnetiques sinusoidales dans les milieux stratifies. Annls Phys (Series 12) 5:596–640

    MathSciNet  Google Scholar 

  • Agoston GA (1987) Colour Theory and its Applications in Art and Design. Springer-Verlag, New-York

    Book  Google Scholar 

  • Bates HW (1864) The naturalist on the river Amazons. 2nd ed, London

    Google Scholar 

  • Bernhard CG (1967) Structural and functional adaptation in a visual system. Endeavor 26: 79–84

    Google Scholar 

  • Bernhard CG and Miller WH (1962) A corneal nipple pattern in insect compound eyes. Acta Physiol Scandinavica 56: 385–386

    Article  Google Scholar 

  • Born M and Wolf E (1965) Principles of optics. 3rd Ed, Perg amon, Oxford

    Google Scholar 

  • Bouligand Y (1972) Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue & Cell 4: 189–217

    Article  Google Scholar 

  • Brink DJ and Lee ME (1999) Confined blue iridescence by a diffraction microstructure: an optical investigation of the Cynandra opis butterfly. App Opt 38: 5282–5289

    Article  ADS  Google Scholar 

  • Burnham RW, Hanes RM and Bartleson CJ (1963) Color. Wiley, New York

    Google Scholar 

  • Byers JR (1975) Tyndall blue and surface white of tent caterpillars Malacosoma spp. J Insect Physiol 21:401–415

    Article  Google Scholar 

  • Chan CT, Ho KM and Soukoulis CM (1991) Photonic band gaps in experimentally realizable periodic dielectric structures. Europhys Lett 16: 563–568

    Article  ADS  Google Scholar 

  • Clapham PB and Hutley MC (1973) Reduction of lens reflection by the “moth eye” principle. Nature 244: 281–282

    Article  ADS  Google Scholar 

  • Crowson RA (1981) The biology of Coleoptera. Glasgow, Academic Press

    Google Scholar 

  • Dangeard P (1941) Recherches sur les enclaves iridescentes de la cellule des Algues (in French). Le Botaniste 31: 31–57

    Google Scholar 

  • Denton EJ (1970) On the organisation of reflecting surfaces in some marine animals. Phil Trans Roy Soc B, 258: 285–313

    Article  ADS  Google Scholar 

  • Denton EJ (1971) Reflectors in fishes. Scientific American 224,1: 64–72

    Google Scholar 

  • Denton EJ and Land MF (1971) Mechanism of reflection in silvery layers of fish and cephalopods. Proc Roy Soc B 178: 43–61

    Article  ADS  Google Scholar 

  • Denton EJ and Nicol JAC (1965) Reflection of light by external surfaces of the herring, Clupea harengus. J mar Biol Ass UK 45: 711–738

    Article  Google Scholar 

  • Ditchburn RW (1963) Light. 2nd ed Blackie, London

    MATH  Google Scholar 

  • Durrer H and Villiger W (1970) Schillerradien des Goldcuckuck (Crysococcyx cupreus). Z. Zellforsch 109:407–413

    Article  Google Scholar 

  • Evans RM (1943) Visual processes and colour photography. J Opt Soc Am 33: 579–614

    Article  ADS  Google Scholar 

  • Feldmann G (1970) Sur l’ultrastructure de l’appareil irisant du Gastroclonium clavatum (Roth) Ardissone (Rhodophycees). C R Acad Sci Ser D 270:1244–1246

    Google Scholar 

  • Fox DL (1976) Animal biochromes and structural colours. Univ California Press, Berkeley

    Google Scholar 

  • Fox HM and Vevers G (1960) The nature of animal colours. Sidgwick and Jackson, London

    Google Scholar 

  • Frank F (1939) Die Farbung der Vogelfeder durch Pigment und Struktur (in German). J. Orn. Lpz. 3: 426–523,

    Google Scholar 

  • Gates MD (1970) Physical and physiological properties of plants. In: Remote sensing with special reference to agriculture and forestry. Nat Acad Sci pp 224–252

    Google Scholar 

  • Gertel ET and Green PB (1977) Cell growth pattern and wall micro-fibrillar arrangement. Plant Physiol 60: 247–254

    Article  Google Scholar 

  • Gerwick WH and Lang NJ (1977) Structural, chemical and ecological studies on iridescence in Iridaea (Rhodophyta). J Phycol 13: 121–127

    Article  Google Scholar 

  • Ghiradella H (1991) Light and colour on the wing: structural colours in butterflies and moths. Appl Opt 30: 3492–3500

    Article  ADS  Google Scholar 

  • Ghiradella H (1994) Structure of butterfly scales: patterning in an insect cuticle. Microsc Res Tech 27: 429–438

    Article  Google Scholar 

  • Ghiradella H and Radigan W (1976) Development of butterfly scales; II. Struts, lattices and surface tension. J Morph 150: 279–296

    Article  Google Scholar 

  • Ghiradella H, Aneshansley D, Eisner T, Silbergleid RE and Hinton HE (1972) Ultra-violet reflection of a male butterfly: Interference colour caused by thin layer elaboration of wing scales. Science 178: 1214–1217

    Article  ADS  Google Scholar 

  • Graham RM, Lee DW and Norstog K (1993) Physical and ultrastructural basis of blue leaf iridescence in two neotropical ferns. Amer J Bot 80: 198–203

    Article  Google Scholar 

  • Gralak B, Tayeb G and Enoch S (2001) Morpho butterflies wings color modeled with lamellar grating theory. Opt Express 9: 567–578

    Google Scholar 

  • Greenstein LM (1966) Nacreous pigments and their properties. Proc Scient Sect Toilet Goods Ass. 45:20–26

    Google Scholar 

  • Greenwalt CH, Brandt W and Friel DD (1960) Iridescent colours of hummingbird feathers. J Opt Soc Am 50: 1005–1013

    Article  ADS  Google Scholar 

  • Guinier A (1963) X-ray diffraction. WH Freeman and Company, San Francisco

    Google Scholar 

  • Heavens OS (1960) Optical properties of thin films. Rep Prog Phys 23:1–65

    Article  ADS  Google Scholar 

  • Hebant C and Lee DW (1984) Ultrastructural basis and developmental control of blue iridescence in Selaginella leaves. Amer J Bot 71:216–219

    Article  Google Scholar 

  • Herring PJ (1994) Reflective systems in aquatic animals. Comp Biochem and Physiol 109A: 513–546

    Article  Google Scholar 

  • Hinton and Gibbs DF (1969) Diffraction gratings in Phalacrid beetles. Nature 221: 953–954

    Article  ADS  Google Scholar 

  • Huxley AF (1968) A theoretical treatment of the reflection of light by multilayer structures. J Exp Biol 48: 227–245

    Google Scholar 

  • Huxley J (1976) The coloration of Papilio zalmoxis and P. antimachus and the discovery of Tyndall blue in butterflies. Proc Roy Soc B 193: 441–453

    Article  ADS  Google Scholar 

  • Huxley J (1976) The coloration of Papilio zalmoxis and P. antimachus and the discovery of Tyndall blue in butterflies. Proc Roy Soc Lond B 193: 441–453

    Article  ADS  Google Scholar 

  • Joannopoulos JD, Meade RD and Winn J (1995) Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Kalmus H (1941) Physiology and Ecology of cuticle colour in insects. Nature 148: 428–431.

    Article  ADS  Google Scholar 

  • Kawaguti S and Kamishima Y (1966) Electron microscopy on iridiphores and guanophores offish. 6th Int Cong for Elect Micros: p419

    Google Scholar 

  • Land MF (1966) A multilayer interference reflector in the eye of the scallop, Pecten maximus. J Exp Biol 45: 433–447

    Google Scholar 

  • Land MF (1972) The physics and biology of animal reflectors. Progr Biophys Molec Biol 24: 75–106

    Article  Google Scholar 

  • Land MF (1999) personal communication

    Google Scholar 

  • Large MCJ, McKenzie DR, Parker AR, Steel BC, Ho Karen, Bosi SG, Nicorovici N and McPhedran RC (2001) The mechanism of light reflectance in silverfish. Proc Roy Soc Lond A457: 511–518

    ADS  Google Scholar 

  • Lawrence CR, Vukusic P and Sambles JR (2002) Grazing incidence iridescence from a butterfly wing. App Opt 41:437–441

    Article  ADS  Google Scholar 

  • Lee DW (2000) Structural colouration in vascular plants. Photonics Science News 6: 54–60

    ADS  Google Scholar 

  • Lee DW, Taylor GT and Irvine AK (2000) Structural fruit colouration in Delarbea michieana (Araliaceae). Int J Plant Sci 161: 297–300

    Article  Google Scholar 

  • Lippert W and Gentil K (1959) Uber lamellare Feinstrukturen bei den Schillershuppen der Schmetterlinge vom Urania- und Morpho typ (in German). Z Morphol Okol Tiere 48: 115–122

    Article  Google Scholar 

  • Longhurst RS (1967) Geometrical and physical optics. 2nd ed Longman, London

    Google Scholar 

  • MacAdam DL (1956) Perceptions of colour in projected and televised pictures. J Soc Motion Picture Tel Eng 65: 455–466.

    Google Scholar 

  • Mason CW (1927) Structural colours in insects, II. J Phys Chem 31: 321–354

    Article  Google Scholar 

  • Mckenzie DR, Yin Y and McFall WD (1995) Silvery fish skin as an example of a chaotic reflector. Proc Roy Soc Lond A 451: 579–584

    Article  ADS  Google Scholar 

  • McLeod HA (1969) Thin film optical filters. Adam Hilger, London

    Google Scholar 

  • McPhedran RC, Botten LC, Asatryan AA, Nicorovici N, de Sterke CM and Robinson PA (1999) Ordered and disordered photonic band gap materials. Aust J Phys 52: 791–809

    ADS  MATH  Google Scholar 

  • McPhedran RC, Nicorovici N, McKenzie DL, Botten LC, Parker AR and Rouse GW (2001) The Sea Mouse and the Photonic Crystal. Aust J Chem 54: 241–244

    Article  Google Scholar 

  • Meyer-Rochow VB and Stringer IA (1993) A system of regular ridges instead of nipples on a compound eye that has to operate near the diffraction limit. Vis Res 33: 2645–2647

    Article  Google Scholar 

  • Neville AC (1965) Chitin lamellogenesis in locust cuticle. Q J microsc Sci 106: 269–286

    Google Scholar 

  • Neville AC (1975) Biology of the arthropod cuticle. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Neville AC (1977) Metallic gold and silver colours in some insect cuticles. J Insect Physiol 23: 1267–1274

    Article  Google Scholar 

  • Neville AC and Caveney S (1969) Scarabeid beetle exocuticle as an optical analogue of cholesteric liquid crystals. Biol Rev 44: 531–562

    Article  Google Scholar 

  • Neville AC and Levy S (1984) Helicoidal orientation of cellulose micro-fibrils in Nitella opaca internode cells: ultrastructure and computed theoretical effects of strain reorientation during wall growth. Planta 162: 370–384

    Article  Google Scholar 

  • Neville AC and Levy S (1985) The helicoidal concept in plant cell wall ultrastructure and morphogenesis. In: Brett CT and Hillman JR (eds) The biochemistry of plant cell walls. Cambridge University Press, Cambridge, pp99–124

    Google Scholar 

  • Newton I (1730) Opticks. 4th ed, reprinted New York, Dover

    Google Scholar 

  • Parker AR (1995) Discover of functional iridescence and its coevolution with eyes in the phylogeny of Ostracoda (Crustacea). Proc Roy Soc Lond B 262: 349–355

    Article  ADS  Google Scholar 

  • Parker AR (1998) Colour in Burgess shale animals and the effect of light on evolution in the Cambrian. Proc Roy Soc Lond B 265: 967–972

    Article  Google Scholar 

  • Parker AR (1999) The Cambrian light switch. Biologist 46: 26–30

    Google Scholar 

  • Parker AR (2000) 515 million years of structural colour. J Opt A: Pure Appl Opt 2: R15–R28

    Article  ADS  Google Scholar 

  • Parker AR, McPhedran RC, Botten LC and Nicorovici N (2001) Aphrodite’s iridescence. Nature 409: 36–37

    Google Scholar 

  • Pederson M, Roomans GM and Hofsten Av (1980) Blue iridescence and bromine in the cuticle of the red alga Chondrus crispus Sackh. Bot Marina 23: 193–196

    Google Scholar 

  • Pedler C (1963) The fine structure of the tapetum cellulosum. Exp Eye Res 2: 189–195

    Article  Google Scholar 

  • Phelps CF (1972) Polysaccharides. Oxford biology readers 27, Oxford University Press, London

    Google Scholar 

  • Preston RD (1974) The physical biology of plant cell walls. Chapman and Hall, London

    Google Scholar 

  • Riley PA (1997) Molecules in focus: Melanin. Int J Biochem Cell Biol 29: 1235–1239

    Article  Google Scholar 

  • Rutschke E (1960) Die submikroscopische Struktur schillernder Federn von Entenvogeln (in German). Z Zellforsch 73: 432–443

    Article  Google Scholar 

  • Sanders JV (1968) Diffraction of light by opals. Acta Crst A24: 427–434

    Article  Google Scholar 

  • Sanders JV and Darragh PJ (1971) The microstructure of precious opal. The Mineralogical Record 2:261–268

    Google Scholar 

  • Schultz TD and Bernard GD (1989) Pointillistic mixing of interference colours in cryptic tiger beetles. Nature 337: 72–73

    Article  ADS  Google Scholar 

  • Schultz TD and Rankin MA (1985) The ultrastructure of the epicuticular interference reflectors of tiger beetles (Cicindela). J Exp Biol 117: 87–110

    Google Scholar 

  • Stephenson W (1969) The morphology of stridulatory structures in the genus Ovalipes Rathbun. Trans R Soc New Zealand 11: 43–71

    Google Scholar 

  • Tyndall J (1869) On the blue colour of the sky, the polarisation of skylight and on the polarisation of light by cloudy matter generally. Lond Edin Dubl phil Mag 37: 384–394

    Google Scholar 

  • Vašiček A (1960) Optics of thin films. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Verne J and Leyani F (1938) Les dyschromies (in French). Traite de dermatologie (Paris) 2: 745–811

    Google Scholar 

  • Vukusic P, Sambles JR, Lawrence CR, and Wootton RJ (1999) Quantified interference and diffraction in single Morpho butterfly scales. Proc Roy Soc B 266: 1403–1411

    Article  Google Scholar 

  • Vukusic P, Sambles JR and Ghiradella H (2000a) Optical classification of microstructure in butterfly wing scales. Photonics Science News 6: 61–66

    Google Scholar 

  • Vukusic P, Sambles JR and Lawrence CR (2000b) Structural colour: Colour mixing in wing scales of a butterfly. Nature 404: p457

    Article  ADS  Google Scholar 

  • Vukusic P, Sambles JR, Lawrence CR and Wakely G (2000c) Sculpted multilayer optical effects in two species of Papilio butterfly. App Opt 40: 1116–1125

    Article  ADS  Google Scholar 

  • Vukusic P, Sambles JR, Lawrence CR and Wootton RJ (2001) Structural colour: Now you see it — now you don’t. Nature 410: p36

    Article  ADS  Google Scholar 

  • Vukusic P, Sambles JR, Lawrence CR, and Wootton RJ (2002) Limited-view iridescence in the butterfly Ancyluris meliboeas. Proc Roy Soc B 269: 7–14

    Article  Google Scholar 

  • Woolley JT (1971) Reflectance and transmittance of light by leaves. Plant Physiol 47: 656–662

    Article  Google Scholar 

  • Woolley JT (1975) Refractive index of soybean leaf cell walls. Plant Physiol 55: 172–174

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vukusic, P. (2003). Natural Coatings. In: Kaiser, N., Pulker, H.K. (eds) Optical Interference Coatings. Springer Series in Optical Sciences, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36386-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36386-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05570-6

  • Online ISBN: 978-3-540-36386-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics