Skip to main content

Conditional Mutagenesis by Cell-Permeable Proteins: Potential, Limitations and Prospects

  • Chapter
Conditional Mutagenesis: An Approach to Disease Models

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 178))

Abstract

The combination of two powerful technologies, the Cre/loxP recombination system and the protein transduction technique, holds great promise for the advancement of biomedical and genome research by enabling precise and rapid control over mutation events. Protein transduction is a recently developed technology to deliver biologically active proteins directly into mammalian cells. It involves the generation of fusion proteins consisting of the cargo molecule to be delivered and a so-called protein transduction domain. Recently, the derivation of cell permeable variants of the DNA recombinase Cre has been reported. Cre is a site-specific recombinase that recognizes 34 base pair loxP sites and has been widely used to genetically engineer mammalian cells in vitro and in vivo. Recombinant cell-permeable Cre recombinase was found to efficiently induce recombination of loxP-modified alleles in various mammalian cell lines. Here we review recent advances in conditional expression and mutagenesis employing cell-permeable Cre proteins. Moreover, this review summarizes recent findings of studies aimed at deciphering the molecular mechanism of the cellular uptake of cell-permeable fusion proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Astriab-Fisher A, Sergueev DS, Fisher M, Shaw BR, Juliano RL (2000) Antisense inhibition of P-glycoprotein expression using peptide-oligonucleotide conjugates. Biochem Pharmacol 60:83–90

    Article  PubMed  CAS  Google Scholar 

  • Becker-Hapak M, McAllister SS, Dowdy SF (2001) TAT-mediated protein transduction into mammalian cells. Methods 24:247–256

    Article  PubMed  CAS  Google Scholar 

  • Belting M, Persson S, Fransson LA (1999) Proteoglycan involvement in polyamine uptake. Biochem J 338:317–323

    Article  PubMed  CAS  Google Scholar 

  • Bode J, Schlake T, Iber M, Schubeler D, Seibler J, Snezhkov E, Nikolaev L (2000) The transgeneticist’s toolbox: novel methods for the targeted modification of eukaryotic genomes. Biol Chem 381:801–813

    Article  PubMed  CAS  Google Scholar 

  • Bolton SJ, Jones DN, Darker JG, Eggleston DS, Hunter AJ, Walsh FS (2000) Cellular uptake and spread of the cell-permeable peptide penetratin in adult rat brain. Eur J Neurosci 12:2847–2855

    Article  PubMed  CAS  Google Scholar 

  • Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28

    Article  PubMed  CAS  Google Scholar 

  • Brooks H, Lebleu B, Vives E (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 57:559–577

    Article  PubMed  CAS  Google Scholar 

  • Buch T, Heppner FL, Tertilt C, Heinen TJ, Kremer M, Wunderlich FT, Jung S, Waisman A (2005) A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2:419–426

    Article  PubMed  CAS  Google Scholar 

  • Caron NJ, Torrente Y, Camirand G, Bujold M, Chapdelaine P, Leriche K, Bresolin N, Tremblay JP (2001) Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol Ther 3:310–318

    Article  PubMed  CAS  Google Scholar 

  • Caron NJ, Quenneville SP, Tremblay JP (2004) Endosome disruption enhances the functional nuclear delivery of Tat-fusion proteins. Biochem Biophys Res Commun 319:12–20

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Saidon C, Nechushtan H, Kahlon S, Livni N, Nissim A, Razin E (2003) A novel strategy using single-chain antibody to show the importance of Bcl-2 in mast cell survival. Blood 102:2506–2512

    Article  PubMed  CAS  Google Scholar 

  • Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44

    Article  PubMed  CAS  Google Scholar 

  • Console S, Marty C, Garcia-Echeverria C, Schwendener R, Ballmer-Hofer K (2003) Antennapedia and HIV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J Biol Chem 278:35109–35114

    Article  PubMed  CAS  Google Scholar 

  • Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8:1323–1326

    Article  PubMed  CAS  Google Scholar 

  • Demuth I, Frappart PO, Hildebrand G, Melchers A, Lobitz S, Stockl L, Varon R, Herceg Z, Sperling K, Wang ZQ, Digweed M (2004) An inducible null mutant murine model of Nijmegen breakage syndrome proves the essential function of NBS1 in chromosomal stability and cell viability. Hum Mol Genet 13:2385–2397

    Article  PubMed  CAS  Google Scholar 

  • Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    PubMed  CAS  Google Scholar 

  • Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A (1996) Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 271:18188–18193

    Article  PubMed  CAS  Google Scholar 

  • Derossi D, Chassaing G, Prochiantz A (1998) Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol 8:84–87

    Article  PubMed  CAS  Google Scholar 

  • Dietz GP, Bahr M (2004) Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 27:85–131

    Article  PubMed  CAS  Google Scholar 

  • Dostmann WR, Taylor MS, Nickl CK, Brayden JE, Frank R, Tegge WJ (2000) Highly specific, membrane-permeant peptide blockers of cGMP-dependent protein kinase Ialpha inhibit NO-induced cerebral dilation. Proc Natl Acad Sci U S A 97:14772–14777

    Article  PubMed  CAS  Google Scholar 

  • Elliott G, O’Hare P (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88:223–233

    Article  PubMed  CAS  Google Scholar 

  • Ezhevsky SA, Nagahara H, Vocero-Akbani AM, Gius DR, Wei MC, Dowdy SF (1997) Hypophosphorylation of the retinoblastoma protein (pRb) by cyclin D:Cdk4/6 complexes results in active pRb. Proc Natl Acad Sci U S A 94:10699–10704

    Article  PubMed  CAS  Google Scholar 

  • Falnes PO, Wesche J, Olsnes S (2001) Ability of the Tat basic domain and VP22 to mediate cell binding, but not membrane translocation of the diphtheria toxin A-fragment. Biochemistry 40:4349–4358

    Article  PubMed  CAS  Google Scholar 

  • Fang B, Xu B, Koch P, Roth JA (1998) Intercellular trafficking of VP22-GFP fusion proteins is not observed in cultured mammalian cells. Gene Ther 5:1420–1424

    Article  PubMed  CAS  Google Scholar 

  • Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J (1994) Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A 91:664–668

    Article  PubMed  CAS  Google Scholar 

  • Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93:10887–10890

    Article  PubMed  CAS  Google Scholar 

  • Ferrari A, Pellegrini V, Arcangeli C, Fittipaldi A, Giacca M, Beltram F (2003) Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol Ther 8:284–294

    Article  PubMed  CAS  Google Scholar 

  • Fittipaldi A, Ferrari A, Zoppe M, Arcangeli C, Pellegrini V, Beltram F, Giacca M (2003) Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem 278:34141–34149

    Article  PubMed  CAS  Google Scholar 

  • Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann-Benzakein E, Garcia-Gabay I, Pepper MS, Vassalli JD, Herrera PL (2000) Inducible and irreversible control of gene expression using a single transgene. Nucleic Acids Res 28:e99

    Article  PubMed  CAS  Google Scholar 

  • Ghibaudi E, Boscolo B, Inserra G, Laurenti E, Traversa S, Barbero L, Ferrari RP (2005) The interaction of the cell-penetrating peptide penetratin with heparin, heparansulfates and phospholipid vesicles investigated by ESR spectroscopy. J Pept Sci 11:401–409

    Article  PubMed  CAS  Google Scholar 

  • Gius DR, Ezhevsky SA, Becker-Hapak M, Nagahara H, Wei MC, Dowdy SF (1999) Transduced p16INK4a peptides inhibit hypophosphorylation of the retinoblastoma protein and cell cycle progression prior to activation of Cdk2 complexes in late G1. Cancer Res 59:2577–2580

    PubMed  CAS  Google Scholar 

  • Glover S, Nathaniel R, Shakir L, Perrault C, Anderson RK, Tran-Son-Tay R, Benya RV (2005) Transient upregulation of GRP and its receptor critically regulate colon cancer cell motility during remodeling. Am J Physiol Gastrointest Liver Physiol 288:G1274–G1282

    Article  PubMed  CAS  Google Scholar 

  • Green I, Christison R, Voyce CJ, Bundell KR, Lindsay MA (2003) Protein transduction domains: are they delivering? Trends Pharmacol Sci 24:213–215

    Article  PubMed  CAS  Google Scholar 

  • Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188

    Article  PubMed  CAS  Google Scholar 

  • Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265:103–106

    Article  PubMed  CAS  Google Scholar 

  • Guelen L, Paterson H, Gaken J, Meyers M, Farzaneh F, Tavassoli M (2004) TAT-apoptin is efficiently delivered and induces apoptosis in cancer cells. Oncogene 23:1153–1165

    Article  PubMed  CAS  Google Scholar 

  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  PubMed  CAS  Google Scholar 

  • Hakkarainen T, Wahlfors T, Merilainen O, Loimas S, Hemminki A, Wahlfors J (2005) VP22 does not significantly enhance enzyme prodrug cancer gene therapy as a part of a VP22-HSVTk-GFP triple fusion construct. J Gene Med 7:898–907

    Article  PubMed  CAS  Google Scholar 

  • Han K, Jeon MJ, Kim SH, Ki D, Bahn JH, Lee KS, Park J, Choi SY (2001) Efficient intracellular delivery of an exogenous protein GFP with genetically fused basic oligopeptides. Mol Cells 12:267–271

    PubMed  CAS  Google Scholar 

  • Haupt S, Edenhofer F, Peitz M, Leinhaas A, Brustle O (2006) Stage specific conditional mutagenesis in mouse embryonic stem cell-derived neural cells and post-mitotic neurons by direct delivery of biologically active Cre recombinase. Stem Cells. 2006 Sep 7; [Epub ahead of print]

    Google Scholar 

  • Heng BC, Cao T (2005) Making cell-permeable antibodies (Transbody) through fusion of protein transduction domains (PTD)with single chain variable fragment (scFv) antibodies: potential advantages over antibodies expressed within the intracellular environment (Intrabody). Med Hypotheses 64:1105–1108

    Article  PubMed  CAS  Google Scholar 

  • Ho A, Schwarze SR, Mermelstein SJ, Waksman G, Dowdy SF (2001) Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res 61:474–477

    PubMed  CAS  Google Scholar 

  • Hoess RH, Ziese M, Sternberg N (1982) P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci U S A 79:3398–3402

    Article  PubMed  CAS  Google Scholar 

  • Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH (2003) Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 4:321–329

    Article  PubMed  CAS  Google Scholar 

  • Jo D, Nashabi A, Doxsee C, Lin Q, Unutmaz D, Chen J, Ruley HE (2001) Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase. Nat Biotechnol 19:929–933

    Article  PubMed  CAS  Google Scholar 

  • Joshi SK, Hashimoto K, Koni PA (2002) Induced DNA recombination by Cre recombinase protein transduction. Genesis 33:48–54

    Article  PubMed  CAS  Google Scholar 

  • Kabouridis PS (2003) Biological applications of protein transduction technology. Trends Biotechnol 21:498–503

    Article  PubMed  CAS  Google Scholar 

  • Kaplan IM, Wadia JS, Dowdy SF (2005) Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release 102:247–253

    Article  PubMed  CAS  Google Scholar 

  • Kellendonk C, Tronche F, Casanova E, Anlag K, Opherk C, Schutz G (1999) Inducible site-specific recombination in the brain. J Mol Biol 285:175–182

    Article  PubMed  CAS  Google Scholar 

  • Kondo M, Asai T, Katanasaka Y, Sadzuka Y, Tsukada H, Ogino K, Taki T, Baba K, Oku N (2004) Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase. Int J Cancer 108:301–306

    Article  PubMed  CAS  Google Scholar 

  • Kracker S, Bergmann Y, Demuth I, Frappart PO, Hildebrand G, Christine R, Wang ZQ, Sperling K, Digweed M, Radbruch A (2005) Nibrin functions in Ig class-switch recombination. Proc Natl Acad Sci U S A 102:1584–1589

    Article  PubMed  CAS  Google Scholar 

  • Krosl J, Austin P, Beslu N, Kroon E, Humphries RK, Sauvageau G (2003) In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med 9:1428–1432

    Article  PubMed  CAS  Google Scholar 

  • Kuhn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429

    Article  PubMed  CAS  Google Scholar 

  • Kuzin II, Snyder JE, Ugine GD, Wu D, Lee S, Bushnell T Jr, Insel RA, Young FM, Bottaro A (2001) Tetracyclines inhibit activated B cell function. Int Immunol 13:921–931

    Article  PubMed  CAS  Google Scholar 

  • Kwon YD, Oh SK, Kim HS, Ku SY, Kim SH, Choi YM, Moon SY (2005) Cellular manipulation of human embryonic stem cells by TAT-PDX1 protein transduction. Mol Ther 12:28–32

    Article  PubMed  CAS  Google Scholar 

  • Lakso M, Sauer B, Mosinger B Jr, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci U S A 89:6232–6236

    Article  PubMed  CAS  Google Scholar 

  • Leifert JA, Harkins S, Whitton JL (2002) Full-length proteins attached to the HIV tat protein transduction domain are neither transduced between cells, nor exhibit enhanced immunogenicity. Gene Ther 9:1422–1428

    Article  PubMed  CAS  Google Scholar 

  • Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2:743–755

    Article  PubMed  CAS  Google Scholar 

  • Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  PubMed  CAS  Google Scholar 

  • Lin Q, Dong C, Cooper MD (1998) Impairment of T and B cell development by treatment with a type I interferon. J Exp Med 187:79–87

    Article  PubMed  CAS  Google Scholar 

  • Lin Q, Jo D, Gebre-Amlak KD, Ruley HE (2004) Enhanced cell-permeant Cre protein for site-specific recombination in cultured cells. BMC Biotechnol 4:25

    Article  PubMed  CAS  Google Scholar 

  • Lin YZ, Yao SY, Veach RA, Torgerson TR, Hawiger J (1995) Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J Biol Chem 270:14255–14258

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE, Moir RD, Nath A, He JJ (2000) Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 6:1380–1387

    Article  PubMed  CAS  Google Scholar 

  • Logie C, Stewart AF (1995) Ligand-regulated site-specific recombination. Proc Natl Acad Sci U S A 92:5940–5944

    Article  PubMed  CAS  Google Scholar 

  • Loonstra A, Vooijs M, Beverloo HB, Allak BA, van Drunen E, Kanaar R, Berns A, Jonkers J (2001) Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc Natl Acad Sci U S A 98:9209–9214

    Article  PubMed  CAS  Google Scholar 

  • Lundberg M, Johansson M (2001) Is VP22 nuclear homing an artifact? Nat Biotechnol 19:713–714

    Article  PubMed  CAS  Google Scholar 

  • Madore SJ, Cullen BR (1993) Genetic analysis of the cofactor requirement for human mmunodeficiency virus type 1 Tat function. J Virol 67:3703–3711

    PubMed  CAS  Google Scholar 

  • Mai JC, Shen H, Watkins SC, Cheng T, Robbins PD (2002) Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J Biol Chem 277:30208–30218

    Article  PubMed  CAS  Google Scholar 

  • Matsushita M, Tomizawa K, Moriwaki A, Li ST, Terada H, Matsui H (2001) A high-efficiency protein transduction system demonstrating the role of PKA in long-lasting long-term potentiation. J Neurosci 21:6000–6007

    PubMed  CAS  Google Scholar 

  • Matsushita M, Noguchi H, Lu YF, Tomizawa K, Michiue H, Li ST, Hirose K, Bonner-Weir S, Matsui H (2004) Photo-acceleration of protein release from endosome in the protein transduction system. FEBS Lett 572:221–226

    Article  PubMed  CAS  Google Scholar 

  • McLeod M, Craft S, Broach JR (1986) Identification of the crossover site during FLP-mediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle. Mol Cell Biol 6:3357–3367

    PubMed  CAS  Google Scholar 

  • Metzger D, Clifford J, Chiba H, Chambon P (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 92:6991–6995

    Article  PubMed  CAS  Google Scholar 

  • Minamino T, Gaussin V, DeMayo FJ, Schneider MD (2001) Inducible gene targeting in postnatal myocardium by cardiac-specific expression of a hormone-activated Cre fusion protein. Circ Res 88:587–592

    PubMed  CAS  Google Scholar 

  • Mortlock A, Low W, Crisanti A (2003) Suppression of gene expression by a cell-permeable Tet repressor. Nucleic Acids Res 31:e152

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K, Yamanaka S (2004) mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 24:6710–6718

    Article  PubMed  CAS  Google Scholar 

  • Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA, Becker-Hapak M, Ezhevsky SA, Dowdy SF (1998) Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med 4:1449–1452

    Article  PubMed  CAS  Google Scholar 

  • Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109

    Article  PubMed  CAS  Google Scholar 

  • Nakase I, Niwa M, Takeuchi T, Sonomura K, Kawabata N, Koike Y, Takehashi M, Tanaka S, Ueda K, Simpson JC, Jones AT, Sugiura Y, Futaki S (2004) Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther 10:1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Bu G, Olins GM, Higuchi DA, Herz J, Broze GJ Jr, Schwartz AL (1995) Two receptor systems are involved in the plasma clearance of tissue factor pathway inhibitor in vivo. J Biol Chem 270:24800–24804

    Article  PubMed  CAS  Google Scholar 

  • Nolden L, Edenhofer F, Haupt S, Koch P, Wunderlich FT, Siemen H, Brustle O. Site-specific recombination in human embryonic stem cells induced by cell-permeant Cre recombinase. Nat Methods. 2006 Jun; 3(6):461–7

    Article  PubMed  CAS  Google Scholar 

  • Oberdoerffer P, Otipoby KL, Maruyama M, Rajewsky K (2003) Unidirectional Cre-mediated genetic inversion in mice using the mutant loxP pair lox66/lox71. Nucleic Acids Res 31:e140

    Article  PubMed  CAS  Google Scholar 

  • Orban PC, Chui D, Marth JD (1992) Tissue-and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A 89:6861–6865

    Article  PubMed  CAS  Google Scholar 

  • Peitz M, Pfannkuche K, Rajewsky K, Edenhofer F (2002) Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc Natl Acad Sci U S A 99:4489–4494

    Article  PubMed  CAS  Google Scholar 

  • Pooga M, Hallbrink M, Zorko M, Langel U (1998) Cell penetration by transportan. FASEB J 12:67–77

    PubMed  CAS  Google Scholar 

  • Prochiantz A (2000) [Messenger proteins]. J Soc Biol 194:119–123

    PubMed  CAS  Google Scholar 

  • Rajewsky K, Gu H, Kuhn R, Betz UA, Muller W, Roes J, Schwenk F (1996) Conditional gene targeting. J Clin Invest 98:600–603

    PubMed  CAS  Google Scholar 

  • Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590

    Article  PubMed  CAS  Google Scholar 

  • Richard JP, Melikov K, Brooks H, Prevot P, Lebleu B, Chernomordik LV (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem 280:15300–15306

    Article  PubMed  CAS  Google Scholar 

  • Rohlmann A, Gotthardt M, Willnow TE, Hammer RE, Herz J (1996) Sustained somatic gene inactivation by viral transfer of Cre recombinase. Nat Biotechnol 14:1562–1565

    Article  PubMed  CAS  Google Scholar 

  • Sadowski PD (1995) The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 51:53–91

    PubMed  CAS  Google Scholar 

  • Sandgren S, Wittrup A, Cheng F, Jonsson M, Eklund E, Busch S, Belting M (2004) The human antimicrobial peptide LL-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. J Biol Chem 279:17951–17956

    Article  PubMed  CAS  Google Scholar 

  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572

    Article  PubMed  CAS  Google Scholar 

  • Schwarze SR, Hruska KA, Dowdy SF (2000) Protein transduction: unrestricted delivery into all cells? Trends Cell Biol 10:290–295

    Article  PubMed  CAS  Google Scholar 

  • Shibata H, Toyama K, Shioya H, Ito M, Hirota M, Hasegawa S, Matsumoto H, Takano H, Akiyama T, Toyoshima K, Kanamaru R, Kanegae Y, Saito I, Nakamura Y, Shiba K, Noda T (1997) Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278:120–123

    Article  PubMed  CAS  Google Scholar 

  • Silhol M, Tyagi M, Giacca M, Lebleu B, Vives E (2002) Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. Eur J Biochem 269:494–501

    Article  PubMed  CAS  Google Scholar 

  • Silver DP, Livingston DM (2001) Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Mol Cell 8:233–243

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Tumurbaatar B, Jia J, Diao H, Bodola F, Lemon SM, Tang W, Bowen DG, Mc-Caughan GW, Bertolino P, Chan T-S (2005) Parenchymal expression of CD86/B7.2 contributes to hepatitis C virus-related liver injury. J Virol 79:10730–10739

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Futaki S, Niwa M, Tanaka S, Ueda K, Sugiura Y (2002) Possible existence of common internalization mechanisms among arginine-rich peptides. J Biol Chem 277:2437–2443

    Article  PubMed  CAS  Google Scholar 

  • Takenobu T, Tomizawa K, Matsushita M, Li ST, Moriwaki A, Lu YF, Matsui H (2002) Development of p53 protein transduction therapy using membrane-permeable peptides and the application to oral cancer cells. Mol Cancer Ther 1:1043–1049

    PubMed  CAS  Google Scholar 

  • Torchilin VP, Rammohan R, Weissig V, Levchenko TS (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci U S A 98:8786–8791

    Article  PubMed  CAS  Google Scholar 

  • Tung CH, Weissleder R (2003) Arginine containing peptides as delivery vectors. Adv Drug Deliv Rev 55:281–294

    Article  PubMed  CAS  Google Scholar 

  • Tünnemann G, Martin RM, Haupt S, Patsch C, Edendorfer F, Cardoso MC (2006) Cargodependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. FASEB J 2006 Sep;20(11):1775–84

    Article  PubMed  CAS  Google Scholar 

  • Tyagi M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276:3254–3261

    Article  PubMed  CAS  Google Scholar 

  • Tze LE, Schram BR, Lam KP, Hogquist KA, Hippen KL, Liu J, Shinton SA, Otipoby KL, Rodine PR, Vegoe AL, Kraus M, Hardy RR, Schlissel MS, Rajewsky K, Behrens TW (2005) Basal immunoglobulin signaling actively maintains developmental stage in immature B cells. PLoS Biol 3:e82

    Article  PubMed  CAS  Google Scholar 

  • Utomo AR, Nikitin AY, Lee WH (1999) Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nat Biotechnol 17:1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Vasioukhin V, Degenstein L, Wise B, Fuchs E (1999) The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc Natl Acad Sci U S A 96:8551–8556

    Article  PubMed  CAS  Google Scholar 

  • Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  PubMed  CAS  Google Scholar 

  • Wadia JS, Dowdy SF (2003) Modulation of cellular function by TAT mediated transduction of full length proteins. Curr Protein Pept Sci 4:97–104

    Article  PubMed  CAS  Google Scholar 

  • Wadia JS, Stan RV, Dowdy SF (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10:310–315

    Article  PubMed  CAS  Google Scholar 

  • Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A 97:13003–13008

    Article  PubMed  CAS  Google Scholar 

  • Will E, Klump H, Heffner N, Schwieger M, Schiedlmeier B, Ostertag W, Baum C, Stocking C (2002) Unmodified Cre recombinase crosses the membrane. Nucleic Acids Res 30:e59

    Article  PubMed  Google Scholar 

  • Williams EJ, Dunican DJ, Green PJ, Howell FV, Derossi D, Walsh FS, Doherty P (1997) Selective inhibition of growth factor-stimulated mitogenesis by a cell-permeable Grb2-binding peptide. J Biol Chem 272:22349–22354

    Article  PubMed  CAS  Google Scholar 

  • Yu BD, Becker-Hapak M, Snyder EL, Vooijs M, Denicourt C, Dowdy SF (2003) Distinct and nonoverlapping roles for pRB and cyclin D:cyclin-dependent kinases 4/6 activity in melanocyte survival. Proc Natl Acad Sci U S A 100:14881–14886

    Article  PubMed  CAS  Google Scholar 

  • Zezula J, Casaccia-Bonnefil P, Ezhevsky SA, Osterhout DJ, Levine JM, Dowdy SF, Chao MV, Koff A (2001) p21cip1 is required for the differentiation of oligodendrocytes independently of cell cycle withdrawal. EMBO Rep 2:27–34

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patsch, C., Edenhofer, F. (2007). Conditional Mutagenesis by Cell-Permeable Proteins: Potential, Limitations and Prospects. In: Feil, R., Metzger, D. (eds) Conditional Mutagenesis: An Approach to Disease Models. Handbook of Experimental Pharmacology, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35109-2_9

Download citation

Publish with us

Policies and ethics