Skip to main content

Cre/loxP-Mediated Chromosome Engineering of the Mouse Genome

  • Chapter
Conditional Mutagenesis: An Approach to Disease Models

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 178))

Abstract

Together with numerous other genome modifications, chromosome engineering offers a very powerful tool to accelerate the functional analysis of the mammalian genome. The technology, based on the Cre/loxP system, is used more and more in the scientific community in order to generate new chromosomes carrying deletions, duplications, inversions and translocations in targeted regions of interest. In this review, we will present the basic principle of the technique either in vivo or in vitro and we will briefly describe some applications to provide highly valuable genetic tools, to decipher the mammalian genome organisation and to analyze human diseases in the mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DJ, Biggs PJ, Cox T et al (2004) Mutagenic insertion and chromosome engineering resource (MICER). Nat Genet 36:867–871

    Article  PubMed  CAS  Google Scholar 

  • Austin CP, Battey JF, Bradley A et al (2004) The Knockout Mouse Project. Nat Genet 36:921–924

    Article  PubMed  CAS  Google Scholar 

  • Auwerx J, Avner P, Baldock R et al (2004) The European dimension for the mouse genome mutagenesis program. Nat Genet 36:925–927

    Article  PubMed  CAS  Google Scholar 

  • Beumer KJ, Pimpinelli S, Golic KG (1998) Induced chromosomal exchange directs the segregation of recombinant chromatids in mitosis of Drosophila. Genetics 150:173–188

    PubMed  CAS  Google Scholar 

  • Biggs PJ, Vogel H, Sage M et al (2003) Allelic phasing of a mouse chromosome 11 deficiency influences p53 tumorigenicity. Oncogene 22:3288–3296

    Article  PubMed  CAS  Google Scholar 

  • Buchholz F, Refaeli Y, Trumpp A et al (2000) Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxP-mediated recombination in the mouse. EMBO Rep 1:133–139

    Article  PubMed  CAS  Google Scholar 

  • Clerc P, Avner P (1998) Role of the region 3′ to Xist exon 6 in the counting process of X-chromosome inactivation. Nat Genet 19:249–253

    Article  PubMed  CAS  Google Scholar 

  • Collins EC, Pannell R, Simpson EM et al (2000) Inter-chromosomal recombination of Mll and Af9 genes mediated by cre-loxP in mouse development. EMBO Rep 1:127–132

    Article  PubMed  CAS  Google Scholar 

  • Davisson MT, Schmidt C, Akeson EC (1990) Segmental trisomy of murine chromosome 16: a new model system for studying Down syndrome. Prog Clin Biol Res 360:263–280

    PubMed  CAS  Google Scholar 

  • Del Punta K, Leinders-Zufall T, Rodriguez I et al (2002) Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419:70–73

    Article  PubMed  Google Scholar 

  • Deschamps J, van Nes J (2005) Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 132:2931–2942

    Article  PubMed  CAS  Google Scholar 

  • de Vries WN, Binns LT, Fancher KS (2000) Expression of Cre recombinase in mouse oocytes: a means to study maternal effect genes. Genesis 26:110–112

    Article  PubMed  Google Scholar 

  • Driscoll DA (1994) Genetic basis of DiGeorge and velocardiofacial syndromes. Curr Opin Pediatr 6:702–706

    PubMed  CAS  Google Scholar 

  • Dupe V, Davenne M, Brocard J et al (1997) In vivo functional analysis of the Hoxa-1 3′ retinoic acid response element (3′RARE). Development 124:399–410

    PubMed  CAS  Google Scholar 

  • Epstein (1986) The consequence of chromosome imbalance: principles, mechanism and models. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Foster A, Pannell R, Drynan LF et al (2003) Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer. Cancer Cell 3:449–458

    Article  Google Scholar 

  • Gagneten S, Le Y, Miller J et al (1997) Brief expression of a GFPcre fusion gene in embryonic stem cells allows rapid retrieval of site-specific genomic deletion. Nucleic Acid Res 25:3326–3331

    Article  PubMed  CAS  Google Scholar 

  • Genoud N, Behrens A, Miele G et al (2004) Disruption of Doppel prevents neurodegeneration in mice with extensive Prnp deletions. Proc Natl Acad Sci U S A 101:4198–4203

    Article  PubMed  CAS  Google Scholar 

  • Goodwin NC, Ishida Y, Hartford S et al (2001) DelBank: a mouse ES-cell resource for generating deletions. Nat Genet 28:310–311

    Article  PubMed  CAS  Google Scholar 

  • Green EL, Roderick TH (1966) Radiation genetics, In: Green EL (ed) Biology of the Laboratory Mouse. McGraw-Hill, New York, pp. 87–150

    Google Scholar 

  • Gu H, Zou YR, Rajewsky K (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73:1155–1164

    Article  PubMed  CAS  Google Scholar 

  • He J, Navarrete S, Jasinski M (2002) Targeted disruption of Dkc1, the gene mutated in X-linked dyskeratosis congenita causes embryonic lethality in mice. Oncogene 21:7740–7744

    Article  PubMed  CAS  Google Scholar 

  • Herault Y, Rassoulzadegan M, Cuzin F et al (1998) Engineering chromosomes in mice through targeted meiotic recombination (TAMERE). Nature 20:381–384

    CAS  Google Scholar 

  • Herault Y, Kmita M, Sawaka CC et al (2002) A nested deletion approach to generate Cre deleter mice with progressive Hox profiles. Int J Dev Biol 46:185–191

    PubMed  CAS  Google Scholar 

  • Justice MJK, Noveroske JS, Weber et al (1999) Mouse ENU mutagenesis. Hum Mol Genet 8:1955–1963

    Article  PubMed  CAS  Google Scholar 

  • Khor B, Wehrly TD, Sleckman BP (2005) Chromosomal excision of TCRdelta chain genes is dispensable for alphabeta T cell lineage commitment. Int Immunol 17:225–232

    Article  PubMed  CAS  Google Scholar 

  • Kile BT, Hentges KE, Clark AT et al (2003) Functional genetic analysis of mouse chromosome 11. Nature 425:81–86

    Article  PubMed  CAS  Google Scholar 

  • Klysik J, Dinh C, Bradley A (2004) Two new mouse chromosome 11 balancers. Genomics 83:303–310

    Article  PubMed  CAS  Google Scholar 

  • Kmita M, Kondo T, Duboule D (2000a) Targeted inversion of a polar silencer within the HoxD complex re-allocates domains of enhancer sharing. Nat Genet 26:451–454

    Article  PubMed  CAS  Google Scholar 

  • Kmita M, van Der Hoeven F et al (2000b) Mechanisms of Hox gene colinearity: transposition of the anterior Hoxb1 gene into the posterior HoxD complex. Genes Dev 14:198–211

    PubMed  CAS  Google Scholar 

  • Kmita M, Fraudeau N, Herault Y et al (2002a) Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs. Nature 420:145–150

    Article  PubMed  CAS  Google Scholar 

  • Kmita M, Tarchini B, Duboule D et al (2002b) Evolutionary conserved sequences are required for the insulation of the vertebrate Hoxd complex in neural cells. Development 129:5521–5528

    Article  PubMed  CAS  Google Scholar 

  • Kmita M, Tarchini B, Zakani J (2005) Early developmental arrest of mammalian limbs lacking HoxA/HoxD gene function. Nature 435:1113–1116

    Article  PubMed  CAS  Google Scholar 

  • Koike H, Horie K, Fukuyama H et al. (2002) Efficient biallelic mutagenesis with Cre/loxP-mediated inter-chromosomal recombination. EMBO Rep 3:433–437

    Article  PubMed  CAS  Google Scholar 

  • Kudoh H, Ikeda H, Kakitani M et al (2005) A new model mouse for Duchenne muscular dystrophy produced by 2.4 Mb deletion of dystrophin gene using Cre-loxP recombination system. Biochem Biophys Res Commun 328:507–516

    Article  PubMed  CAS  Google Scholar 

  • Kuprash DV, Alimshanov MB, Tumanov AV et al (2002) Redundancy in tumor necrosis factor (TNF) and lymphotoxin (LT) signaling in vivo: mice with inactivation of the entire TNF/LT locus versus single-knockout mice. Mol Cell Biol 22:8626–8634

    Article  PubMed  CAS  Google Scholar 

  • Kushi AK, Edamura M, Noguchi M et al (1998) Generation of mutant mice with large chromosomal deletion by use of irradiated ES cells-analysis of large deletion around hprt locus of ES cell. Mamm Genome 9:269–273

    Article  PubMed  CAS  Google Scholar 

  • Leneuve P, Colnot S, Hamard G et al (2003) Cre-mediated germline mosaicism: a new transgenic mouse for the selective removal of residual markers from tri-lox conditional alleles. Nucleic Acids Res 3:e21

    Article  Google Scholar 

  • LePage DF, Church DM, Millie E et al (2000) Rapid generation of nested chromosomal deletions on mouse chromosome 2. Proc Natl Acad Sci U S A 97:10471–10476

    Article  PubMed  CAS  Google Scholar 

  • Lewandoski M, Martin G (1997) Cre-mediated chromosome loss in mice. Nat Genet 17:223–225

    Article  PubMed  CAS  Google Scholar 

  • Lewandoski M, Montzka Wassarman K, Martin GR (1997) Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line. Curr Biol 7:148–151

    Article  PubMed  CAS  Google Scholar 

  • Li Z-H, Stark G, Götz J, Rülicke T et al (1996) Generation of mice with a 200-kb amyloid precursor protein gene deletion by Cre recombinase-mediated site-specific recombination in embryonic stem cells. Proc Natl Acad Sci U S A 93:6158–6162

    Article  PubMed  CAS  Google Scholar 

  • Lindsay EA, Botta A, Jurecic V et al (1999) Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 401:379–383

    PubMed  CAS  Google Scholar 

  • Lindsay, EA, Vitelli F, Su H et al (2001) Tbx1 haploinsufficiency in the DiGeorge syndrome region cause aortic arch defects in mice. Nature 410:97–101

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Zhang H, McLellan A et al (1998) Embryonic lethality and tumorigenesis caused by segmental aneuploidy on mouse chromosome 11. Genetics 150:1155–1168

    PubMed  CAS  Google Scholar 

  • Liu P, Jenkins NA, Copeland NG (2002) Efficient Cre-loxP-induced mitotic recombination in mouse embryonic stem cells. Nat Genet 30:66–72

    Article  PubMed  CAS  Google Scholar 

  • Lupski JR, Oca-Luna RM, Slaugenhaupt S et al (1991) DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell 66:219–232

    Article  PubMed  CAS  Google Scholar 

  • Medina-Martinez O, Bradley A, Ramirez-Solis R (2000) A large targeted deletion of Hoxb1-Hoxb9 produces a series of single-segment anterior homeotic transformations. Dev Biol 222:71–83

    Article  PubMed  CAS  Google Scholar 

  • Merscher S, Funke B, Epstein JA et al (2001) TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–629

    Article  PubMed  CAS  Google Scholar 

  • Morey C, Arnaud D, Avner P (2001) Tsix-mediated repression of Xist accumulation is not sufficient for normal random X inactivation. Hum Mol Genet 10:1403–1411

    Article  PubMed  CAS  Google Scholar 

  • Nishijima I, Mills A, Qi Y et al (2003) Two new balancer chromosomes on mouse chromosome 4 to facilitate functional annotation of human chromosome 1p. Genesis 36:142–148

    Article  PubMed  CAS  Google Scholar 

  • Nobrega MA, Zhu Y, Plajzer-Frick I et al (2004) Megabase deletions of gene deserts result in viable mice. Nature 431:988–993

    Article  PubMed  CAS  Google Scholar 

  • O’Gorman S, Dagenais NA, Qian M et al (1997) Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc Natl Acad Sci U S A 94:14602–14607

    Article  PubMed  CAS  Google Scholar 

  • Olson LE, Richtsmeier JT, Leszl J et al (2004) A chromosome 21 critical region does not cause specific Down syndrome phenotypes. Science 306:687–690

    Article  PubMed  CAS  Google Scholar 

  • Puech A, Saint-Jore B, Merscher S et al (2000) Normal cardiovascular development in mice deficient for 16 genes in 550 kb of the velocardiofacial DiGeorge syndrome region. Proc Natl Acad Sci U S A 97:10090–10095

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Solis R, Liu P, Bradley A (1995) Chromosome engineering in mice. Nature 378:720–724

    Article  PubMed  CAS  Google Scholar 

  • Reeves RH, Irving NG, Moran TH et al (1995) A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat Genet 11:177–184

    Article  PubMed  CAS  Google Scholar 

  • Russel LB, Hunsicker PR, Cacheiro NLA et al (1989) Chlorambucil effectively induces deletion mutations in mouse germ cells. Proc Natl Acad Sci U S A 86:3704–3708

    Article  Google Scholar 

  • Sago H, Carlson EJ, Smith DJ et al (1998) Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc Natl Acad Sci U S A 96:6256–6261

    Article  Google Scholar 

  • Schimenti JC, Libby BJ, Bergstrom RA et al (2000). Interdigitated deletion complexes on mouse chromosome 5 induced by irradiation of embryonic stem cells. Genome Res 10:1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Schlake T, Schupp I, Kutsche K et al (1999) Predetermined chromosomal deletion encompassing the Nf-1 gene. Oncogene 18:6078–6082

    Article  PubMed  CAS  Google Scholar 

  • Semenova E, Wang XF, Jablonski MM et al (2003) An engineered 800 kilobase deletion of Uchl3 and Lmo7 on mouse chromosome 14 causes defects in viability, postnatal growth and degeneration of muscle and retina. Hum Mol Genet 12:1301–1312

    Article  PubMed  CAS  Google Scholar 

  • Smith AJH, De Sousa MA, Kwabi-Ado B et al (1995) A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat Genet 9:376–385

    Article  PubMed  CAS  Google Scholar 

  • Smith AJH, Xian J, Richarson M et al (2002) Cre-loxP chromosome engineering of a targeted deletion in the mouse corresponding to the 3p21.3 region of homozygous loss in human tumours. Oncogene 21:4521–4529

    Article  PubMed  CAS  Google Scholar 

  • Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71

    Article  PubMed  CAS  Google Scholar 

  • Spitz F, Gonzalez F, Peichel C et al (2001) Large scale transgenic and cluster deletion analysis of the HoxD complex separate an ancestral regulatory module from evolutionary innovations. Genes Dev 15:2209–2214

    Article  PubMed  CAS  Google Scholar 

  • Spitz F, Herkenne C, Morris MA et al (2005) Inversion-induced disruption of the Hoxd cluster leads to the partition of regulatory landscapes. Nat Genet 37:889–893

    Article  PubMed  CAS  Google Scholar 

  • Stemmler MP, Hecht A, Kemler R (2005) E-cadherin intron 2 contains cis-regulatory elements essential for gene expression. Development 132:965–976

    Article  PubMed  CAS  Google Scholar 

  • Su H, Wang X, Bradley A (2000) Nested chromosomal deletions induced with retroviral vectors in mice. Nat Genet 24:92–95

    Article  PubMed  CAS  Google Scholar 

  • Suemori H, Noguchi S (2000) Hox C cluster genes are dispensable for overall body plan of mouse embryonic development. Dev Biol 220:333–342

    Article  PubMed  CAS  Google Scholar 

  • Tang SH, Silva FJ, Tsark WM et al (2002) A Cre/loxP-deleter transgenic line in mouse strain 129S1/SvImJ. Genesis 32:199–202

    Article  PubMed  CAS  Google Scholar 

  • Tsai TF, Jiang YH, Bressler J et al (1999) Paternal deletion from Snrpn to Ube3a in the mouse causes hypotonia, growth retardation and partial lethality and provides evidence for a gene contributing to Prader-Willi syndrome. Hum Mol Genet 8:1357–1364

    Article  PubMed  CAS  Google Scholar 

  • van Deursen J, Fornerod M, van Rees B et al (1995) Cre-mediated site-specific translocation between non-homologous mouse chromosome. Proc Natl Acad Sci U S A 92:7376–7380

    Article  PubMed  Google Scholar 

  • Waterston RH, Lindblack-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  • Walz K, Caratini-Rivera S, Bi W et al (2003) Modeling del(17)(p11.2p11.2) and dup(17)(p11.2p11.2) contiguous gene syndromes by chromosome engineering in mice: phenotypic consequences of gene dosage imbalance. Mol Cell Biol 23:3646–3655

    Article  PubMed  CAS  Google Scholar 

  • Waziri M, Patil SR, Hanson J et al (1983) Abnormality of chromosome 11 in patients with features of Beckwith-Wiedemann syndrome. J Pediatr 102:873–876

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Keener VW, Bi W et al (2004) Reduced penetrance of craniofacial anomalies as a deletion size and genetic background in a chromosome engineered partial mouse model for Smith-Magenis syndrome. Hum Mol Genetics 13:2613–2624

    Article  CAS  Google Scholar 

  • Yu Y, Bradley A (2001) Mouse genomic technologies: engineering chromosomal rearrangements in mice. Nat Rev Genet 2:780–790

    Article  PubMed  CAS  Google Scholar 

  • Zakany J, Duboule D (1996) Synpolydactyly in mice with a targeted deficiency in the HoxD complex. Nature 384:69–71

    Article  PubMed  CAS  Google Scholar 

  • Zakany J, Kmita M, Duboule D (2004) A dual role for Hox genes in limb anterior-posterior asymmetry. Science 304:1669–1672

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Hasty P, Bradley A (1994) Targeting frequency for deletion vectors in embryonic stem cells. Mol Cell Biol 14:2404–2410

    PubMed  CAS  Google Scholar 

  • Zheng B, Mills AA, Bradley A (1999a) A system for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements in mice. Nucleic Acids Res 27:2354–2360

    Article  PubMed  CAS  Google Scholar 

  • Zheng B, Sage M, Cai W-W et al (1999b) Engineering a mouse balancer chromosome. Nat Genet 22:375–378

    Article  PubMed  CAS  Google Scholar 

  • Zheng B, Sage M, Sheppeard EA et al (2000) Engineering mouse chromosomes with Cre-loxP: range, efficiency and somatic applications. Mol Cell Biol 20:648–655

    Article  PubMed  CAS  Google Scholar 

  • Zheng B, Mills AA, Bradley A (2001) Introducing defined chromosomal rearrangements into the mouse genome. Methods 24:81–94

    Article  PubMed  CAS  Google Scholar 

  • Zong H, Espinosa JS, Su HH et al (2005) Mosaic analysis with double markers in mice. Cell 121:479–492

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Jong MC, Frazer KA et al (2000) Genomic interval engineering of mice identifies a novel modulator of triglyceride production. Proc Natl Acad Sci U S A 97:1137–1142

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brault, V., Besson, V., Magnol, L., Duchon, A., Hérault, Y. (2007). Cre/loxP-Mediated Chromosome Engineering of the Mouse Genome. In: Feil, R., Metzger, D. (eds) Conditional Mutagenesis: An Approach to Disease Models. Handbook of Experimental Pharmacology, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35109-2_2

Download citation

Publish with us

Policies and ethics