Skip to main content

TRP Channels of the Pancreatic Beta Cell

  • Chapter
Transient Receptor Potential (TRP) Channels

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 179))

Abstract

Orchestrated ion fluctuations within pancreatic islets regulate hormone secretion and may be essential to processes such as apoptosis. A diverse set of ion channels allows for islet cells to respond to a variety of signals and dynamically regulate hormone secretion and glucose homeostasis (reviewed by Houamed et al. 2004). This chapter focuses on transient receptor potential (TRP)-related channels found within the beta cells of the islet and reviews their roles in both insulin secretion and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiba Y, Kato S, Katsube K, Nakamura M, Takeuchi K, Ishii H, Hibi T (2004) Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet beta cells modulates insulin secretion in rats. Biochem Biophys Res Commun 321:219–225

    Article  CAS  PubMed  Google Scholar 

  • Amann R, Lembeck F (1986) Capsaicin sensitive afferent neurons from peripheral glucose receptors mediate the insulin-induced increase in adrenal secretion. Naunyn Schmiedebergs Arch Pharmacol 334:71–76

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol 54:87–143

    Article  CAS  PubMed  Google Scholar 

  • Bertram R, Smolen P, Sherman A, Mears D, Atwater I, Martin F, Soria B (1995) A role for calcium release-activated current (CRAC) in cholinergic modulation of electrical activity in pancreatic beta-cells. Biophys J 68:2323–2332

    Article  CAS  PubMed  Google Scholar 

  • Bhave G, Hu HJ, Glauner KS, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW 4th (2003) Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc Natl Acad Sci U S A 100:12480–12485

    Article  CAS  PubMed  Google Scholar 

  • Bindokas VP, Kuznetsov A, Sreenan S, Polonsky KS, Roe MW, Philipson LH (2003) Visualizing superoxide production in normal and diabetic rat islets of Langerhans. J Biol Chem 278:9796–9801

    Article  CAS  PubMed  Google Scholar 

  • Bollimuntha S, Cornatzer E, Singh BB (2005) Plasma membrane localization and function of TRPC1 is dependent on its interaction with beta-tubulin in retinal epithelium cells. Vis Neurosci 22:163–170

    Article  PubMed  Google Scholar 

  • Carlsson PO, Sandler S, Jansson L (1996) Influence of the neurotoxin capsaicin on rat pancreatic islets in culture, and on the pancreatic islet blood flow of rats. Eur J Pharmacol 312:75–81

    Article  CAS  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  • Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns (4,5)P2-mediated inhibition. Nature 411:957–962

    Article  CAS  PubMed  Google Scholar 

  • Day AL, Maa J, Zerega EC, Richmond AC, Jordan TH, Grady EF, Mulvihill SJ, Bunnett NW, Kirkwood KS (2005) Neutral endopeptidase determines the severity of pancreatitisassociated lung injury. J Surg Res 128:21–27

    CAS  PubMed  Google Scholar 

  • Dyachok O, Gylfe E (2001) Store-operated influx of Ca(2+) in pancreatic beta-cells exhibits graded dependence on the filling of the endoplasmic reticulum. J Cell Sci 114:2179–2186

    CAS  PubMed  Google Scholar 

  • Fleig A, Penner R (2004) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 25:633–639

    Article  CAS  PubMed  Google Scholar 

  • Freichel M, Vennekens R, Olausson J, Stolz S, Philipp SE, Weissgerber P, Flockerzi V (2005) Functional role of TRPC proteins in native systems: implications from knockout and knock-down studies. J Physiol 567:59–66

    Article  CAS  PubMed  Google Scholar 

  • Fridlyand LE, Philipson LH (2004) Does the glucose-dependent insulin secretion mechanism itself cause oxidative stress in pancreatic beta-cells? Diabetes 53:1942–1948

    CAS  PubMed  Google Scholar 

  • Fridlyand LE, Tamarina N, Philipson LH (2003) Modeling of Ca2+ flux in pancreatic beta-cells: role of the plasma membrane and intracellular stores. Am J Physiol Endocrinol Metab 285:E138–154

    CAS  PubMed  Google Scholar 

  • Fridolf T, Ahrén B (1991) GLP-1(7–36) amide-stimulated insulin secretion in rat islets is sodium-dependent. Biochem Biophys Res Commun 179:701–706

    Article  CAS  PubMed  Google Scholar 

  • Furuya Y, Takasawa S, Yonekura H, Tanaka T, Takahara J, Okamoto H (1995) Cloning of a cDNA encoding rat bone marrow stromal cell antigen 1 (BST-1) from the islets of Langerhans. Gene 165:329–330

    Article  CAS  PubMed  Google Scholar 

  • Gavva NR, Klionsky L, Qu Y, Shi L, Tamir R, Edenson S, Zhang TJ, Viswanadhan VN, Toth A, Pearce LV, Vanderah TW, Porreca F, Blumberg PM, Lile J, Sun Y, Wild K, Louis JC, Treanor JJ (2004) Molecular determinants of vanilloid sensitivity in TRPV1. J Biol Chem 279:20283–20295

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson AJ, Ingelman-Sundberg H, Dzabic M, Awasum J, Nguyen KH, Ostenson CG, Pierro C, Tedeschi P, Woolcott O, Chiounan S, Lund PE, Larsson O, Islam MS (2005) Ryanodine receptor-operated activation of TRP-like channels can trigger critical Ca2+ signaling events in pancreatic beta-cells. FASEB J 19:301–323

    CAS  PubMed  Google Scholar 

  • Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 1:163–173

    Article  Google Scholar 

  • Herson PS, Ashford ML (1997) Activation of a novel non-selective cation channel by alloxan and H2O2 in the rat insulin-secreting cell line CRI-G1. J Physiol 501:59–66

    Article  CAS  PubMed  Google Scholar 

  • Herson PS, Ashford ML (1999) Reduced glutathione inhibits beta-NAD+-activated nonselective cation currents in the CRI-G1 rat insulin-secreting cell line. J Physiol 514:47–57

    Article  CAS  PubMed  Google Scholar 

  • Herson PS, Dulock KA, Ashford ML (1997) Characterization of a nicotinamide-adenine dinucleotide-dependent cation channel in the CRI-G1 rat insulinoma cell line. J Physiol 505:65–76

    Article  CAS  PubMed  Google Scholar 

  • Herson PS, Lee K, Pinnock RD, Hughes J, Ashford ML (1999) Hydrogen peroxide induces intracellular calcium overload by activation of a non-selective cation channel in an insulin-secreting cell line. J Biol Chem 274:833–841

    Article  CAS  PubMed  Google Scholar 

  • Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 99:7461–7466

    Article  CAS  PubMed  Google Scholar 

  • Houamed K, Fu J, Roe MW, Philipson LH (2004) Electrophysiology of the pancreatic beta cell. In: LeRoith DS, Taylor I, Olefsky JM (eds) Diabetes mellitus, 3rd edn. Lippincott Williams and Wilkins, Philadelphia, pp 51–68

    Google Scholar 

  • Hutter MM, Wick EC, Day AL, Maa J, Zerega EC, Richmond AC, Jordan TH, Grady EF, Mulvihill SJ, Bunnett NW, Kirkwood KS (2005) Transient receptor potential vanilloid (TRPV-1) promotes neurogenic inflammation in the pancreas via activation of the neurokinin-1 receptor (NK-1R). Pancreas 30:260–265

    Article  CAS  PubMed  Google Scholar 

  • Inamura K, Sano Y, Mochizuki S, Yokoi H, Miyake A, Nozawa K, Kitada C, Matsushime H, Furuichi K (2003) Response to ADP-ribose by activation of TRPM2 in the CRI-G1 insulinoma cell line. J Membr Biol 191:201–207

    Article  CAS  PubMed  Google Scholar 

  • Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108:421–430

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Lee SY, Hwang SW, Cho H, Shin J, Kang YS, Kim S, Oh U (2002) Agonist recognition sites in the cytosolic tails of vanilloid receptor 1. J Biol Chem 277:44448–44454

    Article  CAS  PubMed  Google Scholar 

  • Karlsson S, Scheurink AJ, Steffens AB, Ahren B (1994) Involvement of capsaicin-sensitive nerves in regulation of insulin secretion and glucose tolerance in conscious mice. Am J Physiol 267:R1071–R1077

    CAS  PubMed  Google Scholar 

  • Leech CA, Habener JF (1997) Insulinotropic glucagon-like peptide-1-mediated activation of non-selective cation currents in insulinoma cells is mimicked by maitotoxin. J Biol Chem 272:17987–17993

    Article  CAS  PubMed  Google Scholar 

  • Lussier MP, Cayouette S, Lepage PK, Bernier CL, Francoeur N, St-Hilaire M, Pinard M, Boulay G (2005) MxA, amember of the dynamin superfamily, interacts with the ankyrinlike repeat domain of TRPC. J Biol Chem 280:19393–19400

    Article  CAS  PubMed  Google Scholar 

  • Mears D, Zimliki CL (2004) Muscarinic agonists activate Ca2+ store-operated and-independent ionic currents in insulin-secreting HIT-T15 cells and mouse pancreatic beta-cells. J Membr Biol 197:59–70

    Article  CAS  PubMed  Google Scholar 

  • Mears D, Sheppard NF Jr, Atwater I, Rojas E, Bertram R, Sherman A (1997) Evidence that calcium release-activated current mediates the biphasic electrical activity of mouse pancreatic beta-cells. J Membr Biol 155:47–59

    Article  CAS  PubMed  Google Scholar 

  • Michel FJ, Fortin GD, Martel P, Yeomans J, Trudeau LE (2005) M3-like muscarinic receptors mediate Ca2+ influx in rat mesencephalic GABAergic neurones through a protein kinase C-dependent mechanism. Neuropharmacology 48:796–809

    Article  CAS  PubMed  Google Scholar 

  • Miura Y, Matsui H (2003) Glucagon-like peptide-1 induces a cAMP-dependent increase of [Na+]i associated with insulin secretion in pancreatic beta-cells. Am J Physiol Endocrinol Metab 285:E1001–1009

    CAS  PubMed  Google Scholar 

  • Miura Y, Gilon P, Henquin JC (1996) Muscarinic stimulation increases Na+ entry in pancreatic B-cells by a mechanism other than the emptying of intracellular Ca2+ pools. Biochem Biophys Res Commun 224:67–73

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra DP, Nau C (2003) Desensitization of capsaicin-activated currents in the vanilloid receptor TRPV1 is decreased by the cyclic AMP-dependent protein kinase pathway. J Biol Chem 278:50080–50090

    Article  CAS  PubMed  Google Scholar 

  • Montell C (2005) The TRP superfamily of cation channels. Sci STKE 272:re3

    Google Scholar 

  • Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is aMg.ATP-regulated divalent cation channel required for cell viability. Nature 411:590–595

    Article  CAS  PubMed  Google Scholar 

  • Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, Schmitz C, Knowles HM, Ferraris D, Li W, Zhang J, Stoddard BL, Scharenberg AM (2005) Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem 280:6138–6148

    Article  CAS  PubMed  Google Scholar 

  • Philipp S, Cavalié A, Freichel M, Wissenbach U, Zimmer S, Trost C, Marquart A, Murakami M, Flockerzi V (1996) A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL. EMBO J 15:6166–6171

    CAS  PubMed  Google Scholar 

  • Prawitt D, Enklaar T, Klemm G, Gartner B, Spangenberg C, Winterpacht A, Higgins M, Pelletier J, Zabel B (2000) Identification and characterization of MTR1, a novel gene with homology to melastatin (MLSN1) and the trp gene family located in the BWS-WT2 critical region on chromosome 11p15.5 and showing allele-specific expression. Hum Mol Genet 9:203–216

    Article  CAS  PubMed  Google Scholar 

  • Prawitt D, Monteilh-Zoller MK, Brixel L, Spangenberg C, Zabel B, Fleig A, Penner R (2003) TRPM5 is atransient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci USA 100:15166–15171

    Article  CAS  PubMed  Google Scholar 

  • Qian F, Huang P, Ma L, Kuznetsov A, Tamarina N, Philipson LH (2002) TRP genes: candidates for nonselective cation channels and store-operated channels in insulin-secreting cells. Diabetes 51Suppl 1:S183–189

    CAS  PubMed  Google Scholar 

  • Roe MW, Worley JF 3rd, Qian F, Tamarina N, Mittal AA, Dralyuk F, Blair NT, Mertz RJ, Philipson LH, Dukes ID (1998) Characterization of a Ca2+ release-activated nonselective cation current regulating membrane potential and [Ca2+]i oscillations in transgenically derived beta-cells. J Biol Chem 273:10402–10410

    Article  CAS  PubMed  Google Scholar 

  • Rolland JF, Henquin JC, Gilon P (2002) G protein-independent activation of an inward Na(+) current by muscarinic receptors in mouse pancreatic beta-cells. J Biol Chem 277:38373–38380

    Article  CAS  PubMed  Google Scholar 

  • Sakura H, Ashcroft FM (1997) Identification of four trp1 gene variants murine pancreatic beta-cells. Diabetologia 40:528–532

    Article  CAS  PubMed  Google Scholar 

  • Sampieri A, Diaz-Munoz M, Antaramian A, Vaca L (2005) The foot structure from the type 1 ryanodine receptor is required for functional coupling to store-operated channels. J Biol Chem 280:24804–24815

    Article  CAS  PubMed  Google Scholar 

  • Sturgess NC, Carrington CA, Hales CN, Ashford ML (1987a) Calcium and ATP regulate the activity of a non-selective cation channel in a rat insulinoma cell line. Pflugers Arch 409:607–615

    Article  CAS  PubMed  Google Scholar 

  • Sturgess NC, Carrington CA, Hales CN, Ashford ML (1987b) Nucleotide-sensitive ion channels in human insulin producing tumour cells. Pflugers Arch 410:169–172

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Lin Y, Zhang Z, Tikunova S, Birnbaumer L, Zhu MX (2001) Identification of common binding sites for calmodulin and inositol 1, 4, 5-trisphosphate receptors on the carboxyl termini of trp channels. J Biol Chem 276:21303–21310

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Tang J, Chen Z, Trost C, Flockerzi V, Li M, Ramesh V, Zhu MX (2000) Association of mammalian trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J Biol Chem 275:37559–37564

    Article  CAS  PubMed  Google Scholar 

  • Tolan I, Ragoobirsingh D, Morrison EY (2001) The effect of capsaicin on blood glucose, plasma insulin levels and insulin binding in dog models. Phytother Res 15:391–394

    Article  CAS  PubMed  Google Scholar 

  • Van Der Stelt M, Di Marzo V (2004) Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels. Eur J Biochem 271:1827–1834

    Article  CAS  Google Scholar 

  • Vyklicky L, Lyfenko A, Kuffler DP, Vlachova V (2003) Vanilloid receptor TRPV1 is not activated by vanilloids applied intracellularly. Neuroreport 14:1061–1065

    Article  CAS  PubMed  Google Scholar 

  • Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci USA 92:9652–9656

    Article  CAS  PubMed  Google Scholar 

  • Wick EC, Hoge SG, Grahn SW, Kim E, Divino LA, Grady EF, Bunnett NW, Kirkwood KS (2006) Transient receptor potential vanilloid 1, calcitonin gene-related peptide, and substance P mediate nociception in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2006 290:G959–G969

    Article  CAS  PubMed  Google Scholar 

  • Worley JF 3rd, McIntyre MS, Spencer B, Dukes ID (1994) Depletion of intracellular Ca2+ stores activates a maitotoxin-sensitive nonselective cationic current in beta-cells. J Biol Chem 269:32055–32058

    CAS  PubMed  Google Scholar 

  • Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J (2001) Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell 7:1047–1057

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193–198

    Article  CAS  PubMed  Google Scholar 

  • Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jacobson, D.A., Philipson, L.H. (2007). TRP Channels of the Pancreatic Beta Cell. In: Flockerzi, V., Nilius, B. (eds) Transient Receptor Potential (TRP) Channels. Handbook of Experimental Pharmacology, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34891-7_24

Download citation

Publish with us

Policies and ethics