Skip to main content

The Mg2+ and Mg2+-Nucleotide-Regulated Channel-Kinase TRPM7

  • Chapter
Transient Receptor Potential (TRP) Channels

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 179))

Abstract

TRPM7 is a member of the melastatin-related subfamily of TRP channels and represents a protein that contains both an ion channel and a kinase domain. The protein is ubiquitously expressed and represents the only ion channel known that is essential for cellular viability. TRPM7 is a divalent cation-selective ion channel that is permeable to Ca2+ and Mg2+, but also conducts essential metals such as Zn2+, Mn2+, and Co2+, as well as nonphysiologic or toxic metals such as Ni2+, Cd2+, Ba2+, and Sr2+. The channel is constitutively open but strongly downregulated by intracellular levels of Mg2+ and MgATP and other Mg-nucleotides. Reducing the cellular levels of these regulators leads to activation of TRPM7-mediated currents that exhibit a characteristic nonlinear current-voltage relationship with pronounced outward rectification due to divalent influx at physiologically negative voltages and monovalent outward fluxes at positive voltages. TRPM7 channel activity is also actively regulated following receptor-mediated changes in cyclic AMP (cAMP) and protein kinase A activity. This regulation as well as that by Mg-nucleotides requires a functional endogenous kinase domain. The function of the kinase domain is not completely understood, but may involve autophosphorylation of TRPM7 as well as phosphorylation of other target proteins such as annexin and myosin IIA heavy chain. Based on these properties, TRPM7 is currently believed to represent a ubiquitous homeostatic mechanism that regulates Ca2+ and Mg2+ fluxes based on the metabolic state of the cell. Physiologically, the channel may serve as a regulated transport mechanism for these ions that could affect cell adhesion, cell growth and proliferation, and even cell death under pathological stress such as anoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877

    Article  CAS  PubMed  Google Scholar 

  • Clark K, Langeslag M, van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, Moolenaar WH, Jalink K, van Leeuwen FN (2006) TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 25:290–301

    Article  CAS  PubMed  Google Scholar 

  • Demeuse P, Penner R, Fleig A (2006) TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J Gen Physiol 127:421–434

    Article  CAS  PubMed  Google Scholar 

  • Elizondo MR, Arduini BL, Paulsen J, MacDonald EL, Sabel JL, Henion PD, Cornell RA, Parichy DM (2005) Defective skeletogenesis with kidney stone formation in dwarf zebrafish mutant for trpm7. Curr Biol 15:667–671

    Article  CAS  PubMed  Google Scholar 

  • Estevez AY, Strange K (2005) Calcium feedback mechanisms regulate oscillatory activity of a TRP-like Ca2+ conductance in C. elegans intestinal cells. J Physiol 567:239–251

    Article  CAS  PubMed  Google Scholar 

  • Estevez AY, Roberts RK, Strange K (2003) Identification of store-independent and store-operated Ca2+ conductances in Caenorhabditis elegans intestinal epithelial cells. J Gen Physiol 122:207–223

    Article  CAS  PubMed  Google Scholar 

  • Fomina AF, Fanger CM, Kozak JA, Cahalan MD (2000) Single channel properties and regulated expression of Ca2+ release-activated Ca2+ (CRAC) channels in human T cells. J Cell Biol 150:1435–1444

    Article  CAS  PubMed  Google Scholar 

  • Hanano T, Hara Y, Shi J, Morita H, Umebayashi C, Mori E, Sumimoto H, Ito Y, Mori Y, Inoue R (2004) Involvement of TRPM7 in cell growth as a spontaneously activated Ca2+ entry pathway in human retinoblastoma cells. J Pharmacol Sci 95:403–419

    Article  CAS  PubMed  Google Scholar 

  • Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173

    Article  CAS  PubMed  Google Scholar 

  • Hermosura MC, Monteilh-Zoller MK, Scharenberg AM, Penner R, Fleig A (2002) Dissociation of the store-operated calcium current ICRAC and the Mg-nucleotide-regulated metal ion current MagNuM. J Physiol 539:445–458

    Article  CAS  PubMed  Google Scholar 

  • Hermosura MC, Nayakanti H, Dorovkov MV, Calderon FR, Ryazanov AG, Haymer DS, Garruto RM (2005) A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc Natl Acad Sci U S A 102:11510–11515

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Li M, Yue L (2005) Potentiation of TRPM7 inward currents by protons. J Gen Physiol 126:137–150

    Article  CAS  PubMed  Google Scholar 

  • Kerschbaum HH, Cahalan MD (1998) Monovalent permeability, rectification, and ionic block of store-operated calcium channels in Jurkat T lymphocytes. J Gen Physiol 111:521–537

    Article  CAS  PubMed  Google Scholar 

  • Kerschbaum HH, Cahalan MD (1999) Single-channel recording of a store-operated Ca2+ channel in Jurkat T lymphocytes. Science 283:836–839

    Article  CAS  PubMed  Google Scholar 

  • Kerschbaum HH, Kozak JA, Cahalan MD (2003) Polyvalent cations as permeant probes of MIC and TRPM7 pores. Biophys J 84:2293–2305

    CAS  PubMed  Google Scholar 

  • Kozak JA, Cahalan MD (2003) MIC channels are inhibited by internal divalent cations but not ATP. Biophys J 84:922–927

    Article  CAS  PubMed  Google Scholar 

  • Kozak JA, Kerschbaum HH, Cahalan MD (2002) Distinct properties of CRAC and MIC channels in RBL cells. J Gen Physiol 120:221–235

    PubMed  Google Scholar 

  • Kozak JA, Matsushita M, Nairn AC, Cahalan MD (2005) Charge screening by internal pH and polyvalent cations as a mechanism for activation, inhibition, and rundown of TRPM7/MIC channels. J Gen Physiol 126:499–514

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Grabb MC, Zipfel GJ, Choi DW (2000) Brain tissue responses to ischemia. J Clin Invest 106:723–731

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Qin F (2005) Functional control of cold-and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J Neurosci 25:1674–1681

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Liman ER (2003) Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci U S A 100:15160–15165

    Article  CAS  PubMed  Google Scholar 

  • Matsushita M, Kozak JA, Shimizu Y, McLachlin DT, Yamaguchi H, Wei FY, Tomizawa K, Matsui H, Chait BT, Cahalan MD, Nairn AC (2005) Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J Biol Chem 280:20793–20803

    Article  CAS  PubMed  Google Scholar 

  • Maynard CJ, Bush AI, Masters CL, Cappai R, Li QX (2005) Metals and amyloid-beta in Alzheimer’s disease. Int J Exp Pathol 86:147–159

    Article  CAS  PubMed  Google Scholar 

  • Milligan G, Kostenis E (2006) Heterotrimeric G-proteins: a short history. Br J Pharmacol 147Suppl 1:S46–55

    Article  CAS  PubMed  Google Scholar 

  • Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121:49–60

    Article  CAS  PubMed  Google Scholar 

  • Mubagwa K, Stengl M, Flameng W (1997) Extracellular divalent cations block a cation non-selective conductance unrelated to calcium channels in rat cardiac muscle. J Physiol 502:235–247

    Article  CAS  PubMed  Google Scholar 

  • Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a MgATP-regulated divalent cation channel required for cell viability. Nature 411:590–595

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T (2006) TheCa(2+)-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25:467–478

    Article  CAS  PubMed  Google Scholar 

  • Oancea E, Wolfe JT, Clapham DE (2006) Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ Res 98:245–253

    Article  CAS  PubMed  Google Scholar 

  • Prakriya M, Lewis RS (2002) Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J Gen Physiol 119:487–507

    Article  CAS  PubMed  Google Scholar 

  • Rohacs T, Lopes CM, Michailidis I, Logothetis DE (2005) PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8:626–634

    Article  CAS  PubMed  Google Scholar 

  • Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat Cell Biol 4:329–336

    CAS  PubMed  Google Scholar 

  • Ryazanova LV, Pavur KS, Petrov AN, Dorovkov MV, Ryazanov AG (2001) Novel type of signaling molecules: protein kinases covalently linked with ion channels. Mol Biol 35:271–283

    Article  CAS  Google Scholar 

  • Ryazanova LV, Dorovkov MV, Ansari A, Ryazanov AG (2004) Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J Biol Chem 279:3708–3716

    Article  CAS  PubMed  Google Scholar 

  • Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191–200

    Article  CAS  PubMed  Google Scholar 

  • Su LT, Agapito MA, Li M, W TN S, Huttenlocher A, Habas R, Yue L, Runnels LW (2006) Trpm7 regulates cell adhesion by controlling the calcium dependent protease calpain. J Biol Chem 281:11260–11270

    Article  CAS  PubMed  Google Scholar 

  • Takezawa R, Schmitz C, Demeuse P, Scharenberg AM, Penner R, Fleig A (2004) Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc Natl Acad Sci U S A 101:6009–6014

    Article  CAS  PubMed  Google Scholar 

  • Teramoto T, Lambie EJ, Iwasaki K (2005) Differential regulation of TRPM channels governs electrolyte homeostasis in the C. elegans intestine. Cell Metab 1:343–354

    Article  CAS  PubMed  Google Scholar 

  • Xiao RP (2000) Cell logic for dual coupling of a single class of receptors to G(s) and G(i) proteins. Circ Res 87:635–637

    CAS  PubMed  Google Scholar 

  • Xiong Z, Lu W, MacDonald JF (1997) Extracellular calcium sensed by a novel cation channel in hippocampal neurons. Proc Natl Acad Sci U S A 94:7012–7017

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J (2001) Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell 7:1047–1057

    Article  CAS  PubMed  Google Scholar 

  • Zakharov SI, Mongayt DA, Cohen RA, Bolotina VM (1999) Monovalent cation and L-type Ca2+ channels participate in calcium paradox-like phenomenon in rabbit aortic smooth muscle cells. J Physiol 514:71–81

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Okawa H, Wang Y, Liman ER (2005) Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem 280:39185–39192

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Penner, R., Fleig, A. (2007). The Mg2+ and Mg2+-Nucleotide-Regulated Channel-Kinase TRPM7. In: Flockerzi, V., Nilius, B. (eds) Transient Receptor Potential (TRP) Channels. Handbook of Experimental Pharmacology, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34891-7_19

Download citation

Publish with us

Policies and ethics