Skip to main content

Part of the book series: Genome Mapping and Molecular Breeding in Plants ((GENMAPP,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acosta Gallegos JA, Castellanos JZ, Nuñez-Gonzáles S, Ochoa-Márquez R, Rosales-Serna R, Singh SP (1995) Registration of ‘Flor de Mayo M38’ common bean. Crop Sci 35:941–942

    Google Scholar 

  • Adam-Blondon AF, Sévignac M, Dron M, Bannerot H (1994 a) A genetic map of common bean to localize specific resistance gene against anthracnose. Genome 37:915–924

    PubMed  CAS  Google Scholar 

  • Adam-Blondon AF, Sevignac M, Bannerot H, Dron M (1994 b) SCAR, RAPD, and RFLP markers linked to the dominant gene (Are) conferring resistance to anthracnose. Theor Appl Genet 88:865–870

    CAS  Google Scholar 

  • Adams MW (1982) Plant architecture and yield breeding in Phaseolus vulgaris L. Iowa State J Res 56:225–254

    Google Scholar 

  • Alzate-Marin AL, Menarim H, Carvalho GA, Paula Jr TJ, Barros EG, Moreira MA (1999) Improved selection with newly identified RAPD markers linked to resistance gene to four pathotypes of Colletotrichum lindemuthianum in common bean. Phytopathology 89:281–285

    Google Scholar 

  • Alzate-Marin AL, Menarim H, Chagas JM, Barros EG, Moreira MA (2000) Identification of RAPD marker linked to the Co-6 anthracnose resistant gene in common bean cultivar AB 136. Genet Mol Biol 23:633–637

    CAS  Google Scholar 

  • Alzate-Marin AL, Menarim H, Baía GS, Paula Jr TJ, Souza KA, Costa MR, Barros EG, Moreira MA (2001) Inheritance of anthracnose resistance in the common bean differential cultivar G 2333 and identification of a new molecular marker linked to the Co-4 2 gene. J Phytopathol 149:259–264

    CAS  Google Scholar 

  • Alzate-Marin AL, Costa MR, Arruda KM, Barros EG, Moreira MA (2003) Characterization of the anthracnose resistance gene present in Ouro Negro (Honduras 35) common bean cultivar. Euphytica 133:165–169

    CAS  Google Scholar 

  • Alzate-Marin AL, Souza TLPO, Ragagnin VA, Moreira MA, Barros EG (2004) Allelism tests between the rust resistance gene present in common bean cultivar Ouro Negro and genes Ur-5 and Ur-11. J Phytopathol 152:60–64

    CAS  Google Scholar 

  • Andersen JW, Smith BM, Washnock CS (1999) Cardiovascular and renal benefits of dry bean and soybean intake. Am J Clinical Nutr 70:464S–474S

    Google Scholar 

  • Ariyarathne HM, Coyne DP, Jung G, Skroch PW, Vidaver AK, Steadman JR, Miklas PN, Bassett MJ (1999) Molecular mapping of disease resistance genes for halo blight, common bacterial blight, and bean common mosaic virus in a segregating population of common bean. J Am Soc Hort Sci 124:654–662

    CAS  Google Scholar 

  • Arndt GC, Gepts P (1989) Segregation and linkage for morphological and biochemical markers in a wide cross in common bean (Phaseolus vulgaris). Annu Rep Bean Improv Coop 32:68–69

    Google Scholar 

  • Arruda MCC, Alzate-Marin AL, Chagas JM, Moreira MA, Barros EG (2000) Identification of RAPD markers linked to the Co-4 resistance gene to Colletotrichum lindemuthianum in common bean. Phytopathology 90:758–761

    Google Scholar 

  • Arumuganathan K, Earle DE (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Awale HE, Kelly JD (2001) Development of SCAR markers linked to Co-4 2 gene in common bean. Annu Rep Bean Improv Coop 44:119–120

    Google Scholar 

  • Bai Y, Michaels TE, Pauls KP (1997) Identification of RAPD markers linked to common bacterial blight resistance genes in Phaseolus vulgaris L. Genome 40:544–551

    CAS  Google Scholar 

  • Bassett MJ (1988) Linkage mapping of marker genes in common bean. In: Gepts P (ed) Genetic Resources of Phaseolus bean. Kluwer, Dordrecht, pp 329–353

    Google Scholar 

  • Bassett MJ (1991) A revised linkage map of common bean. HortScience 26:834–836

    Google Scholar 

  • Bassett MJ (2004) List of genes — Phaseolus vulgaris L. Annu Rep Bean Improv Coop 47:1–24

    Google Scholar 

  • Bassett MJ, Myers JR (1999) Report of BIC genetic committee. Annu Rep Bean Improv Coop 42:vi

    Google Scholar 

  • Beattie A, Michaels TE, Paul KP (1998) An efficient reliable method to screen for common bacterial blight (CBB) resistance in Phaseolus vulgaris L. Annu Rep Bean Improv Coop 41:53–54

    Google Scholar 

  • Beaver JS, Kelly JD (1994) Comparison of two selection methods for the improvement of dry bean populations derived from crosses between gene pools. Crop Sci 34:34–37

    Google Scholar 

  • Beaver JS, Rosas JC, Myers J, Acosta J, Kelly JD, Nchimbi-Msolla S, Misangu R, Bokosi J, Temple S, Arnaud-Santana E, Coyne DP (2003) Contributions of the bean/cowpea CRSP to cultivar and germplasm development in common bean. Field Crops Res 82:87–102

    Google Scholar 

  • Beaver JS, Zapata M, Miklas PN (1999) Registration of PR9443-4 dry bean germplasm resistant to bean golden mosaic, common bacterial blight, and rust. Crop Sci 39:1262

    Google Scholar 

  • Becerra-Velásquez VL, Gepts P (1994) RFLP diversity of common bean (Phaseolus vulgaris) in its centres of origin. Genome 37:256–263

    Google Scholar 

  • Beebe S, Pedraza F, Rojas M, Gutiérrez J, Tohme J (1998) A genetic map of common bean combining RFLP, RAPD, SCAR, and AFLP markers. Annu Rep Bean Improv Coop 41:95–96

    Google Scholar 

  • Beebe S, Skroch PW, Tohme J, Duque MC, Pedraza F, Nienhuis J (2000) Structure of genetic diversity among common bean landraces of Middle American origin based on correspondence analysis of RAPD. Crop Sci 40:264–273

    Google Scholar 

  • Blair MW, Beebe S, Astudillo C, Rengifo J, Giraldo MC, Tohme J, Graham R (2002) Role of nutritional genomics in improving micronutrient content in common beans. In: Proc 1st Intl Conf on Legume Genomics and Genetics: Translation to Crop Improvement 2–6 June 2002, Minneapolis-St Paul, MN

    Google Scholar 

  • Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    PubMed  CAS  Google Scholar 

  • Bliss FA, Pereira PAA, Araujo RS, Henson RA, Kmiecik KA, McFerson JR, Teixeira MG, Silva CC (1989) Registration of five high nitrogen-fixing common bean germplasm lines. Crop Sci 29:240–241

    Google Scholar 

  • Boone WE, Stavely JR, Weeden NF (1999) Development of a sequence-tagged site (STS) marker for Ur-11, a gene conferring resistance to the bean rust fungus, Uromyces appendiculatus. Annu Rep Bean Improv Coop 42:33–34

    Google Scholar 

  • Boutin SR, Young ND, Olson TC, Yu ZH, Shoemaker RC, Vallejos CE (1995) Genome conservation among three legume genera detected with DNA markers. Genetics 38:928–937

    CAS  Google Scholar 

  • Brick MA, Grafton KF (1999) Improvement of mediumseeded race Durango cultivars. In: Singh S (ed) Common Bean Improvement in the Twenty-First Century. Kluwer, Dordrecht, pp 223–253

    Google Scholar 

  • Brick MA, Ogg JB, Schwartz HF, Byrne PF, Kelly JD (2004) Resistance to multiple races of fusarium wilt in common bean. Annu Rep Bean Improv Coop 47:131–132

    Google Scholar 

  • Brick MA, Schwartz HF, Ogg JB, Johnson JJ, Judson F (2001) Registration of ‘Montrose’ pinto bean. Crop Sci 41:260

    Google Scholar 

  • Broughton WJ, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.) — model food legumes. Plant Soil 252:55–128

    CAS  Google Scholar 

  • Brücher H (1988) The wild ancestor of Phaseolus vulgaris in South America. In: Gepts P (ed) Genetic Resources of Phaseolus Beans. Kluwer, Dordrecht, pp 185–214

    Google Scholar 

  • Caixeta ET, Borém A, de Azevedo Fagundes S, Niestche S, de Barros EG, Moreira MA (2003) Inheritance of angular leaf spot resistance in common bean line BAT 332 and identification of RAPD markers linked to the resistance gene. Euphytica 134:297–303

    CAS  Google Scholar 

  • Cardona C, Kornegay J, Posso CE, Morales F, Ramírez H (1990) Comparative value of four arcelin variants in the development of dry bean lines resistant to the Mexican bean weevil. Entomol Exp Appl 56:197–206

    Google Scholar 

  • Carvalho GA, Paula Jr TJ, Alzate-Marin AL, Nietsche S, Barros EG, Moreira MA (1998) Herança da resistência da linhagem AND-277 de feijoeiro-comum à raça 63-23 de Phaeoisariopsis griseola e identificação de marcador RAPD ligado ao gene de resistência. Fitopatol Bras 23:482–485

    CAS  Google Scholar 

  • Cheng SS, Bassett MJ (1981) Chromosome morphology in common bean (Phaseolus vulgaris) at the diplotene stage of meiosis. Cytology (Tokyo) 46:675–684

    Google Scholar 

  • Concibido V, Young N, Lange D, Denny R, Danesh D, Orf J (1996) Targeted comparative genome analysis and qualitative mapping of a major partial-resistance gene to the soybean cyst nematode. Theor Appl Genet 93: 234–241

    CAS  Google Scholar 

  • Corrêa RX, Costa MR, Good-God PI, Ragagnin VA, Faleiro FG, Moreira MA, de Barros EG (2000) Sequence characterized amplified regions linked to rust resistance genes in the common bean. Crop Sci 40:804–807

    Google Scholar 

  • Corrêa RX, Good-God PI, Oliveira MLP, Niestche S, Moreira MA, de Barros EG (2001) Herança da resistência á manchaangular do feijoeiro e identificação de marcadores moleculares flanqueando o loco de resistência. Fitopatol Bras 26:7–32

    Google Scholar 

  • Coyne DP, Nuland DS, Lindgren DT, Steadman JR, Smith DW, Gonzales J, Schild J, Reiser J, Sutton L, Carlson C, Stavely JR, Miklas PN (2000) Weihing great northern disease resistant dry bean. HortScience 35:310–312

    Google Scholar 

  • Coyne DP, Schuster ML, Hill K (1973) Genetic control of reaction to common blight bacterium in bean (Phaseolus vulgaris) as influenced by plant age and bacterial multiplication. J Am Soc Hort Sci 98:94–99

    Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, Vantoai TT, Lohnes DG, Chung J, Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    CAS  Google Scholar 

  • Deakin MH, Dukes PD (1975) Breeding snap beans for resistance to diseases caused by Rhizoctonia solani Kuehn. HortScience 10:269–271

    Google Scholar 

  • Debouck DG (1999) Diversity in Phaseolus species in relation to the common bean. In: Singh SP (ed) Common Bean Improvement in the Twenty-First Century. Kluwer, Dordrecht, pp 25–52

    Google Scholar 

  • Delaney DE, Bliss FA (1991) Selection for increased percentage protein in common bean. 1. Comparison of selection for seed protein alleles and S1 family recurrent selection. Theor Appl Genet 81:301–305

    CAS  Google Scholar 

  • Dickson M, Petzoldt R (1986) p gene in beans (Phaseolus vulgaris L.): a gene for horizontal mediocrity. In: 22nd Int Hort Congress, Davis, CA. HortScience 21:338 (Abstract 339)

    Google Scholar 

  • Ender M, Kelly JD (2005) Identification of QTL associated with white mold resistance in common bean. Crop Sci 45:2482–2490

    CAS  Google Scholar 

  • Faleiro FG, Ragagnin VA, Corrêa RX, Vinhadelli WS, Moreira MA, Barros EG (2000 b) Ligação gênica da resistência à ferrugem e à antracnose na variedade de feijaão Ouro Negro. Rev Ceres 47:375–382

    Google Scholar 

  • Faleiro FG, Ragagnin VA, Schuster I, Corrêa RX, Good-God PI, Brommonshenkel SH, Moreira MA, Barros EG (2003) Mapeamento de genes de resistência do feijoeiro à ferrugem, antracnose e mancha-angular usando marcadores RAPD. Fitopatol Brás 28:059–066

    Google Scholar 

  • Faleiro FG, Vinhadelli WS, Ragagnin VA, Corrêa RX, Moreira MA, Barros EG (2000 a) RAPD markers linked to a block of genes confering rust resistance to the commom bean. Genet Mol Biol 23:399–402

    CAS  Google Scholar 

  • Fall AL, Byrne PF, Jung G, Coyne DP, Brick MA, Schwartz HF (2001) Detection and mapping of a major locus for Fusarium wilt resistance in common bean. Crop Sci 41:1494–1498

    Google Scholar 

  • Ferreira CF, Borém A, Carvalho GA, Nietsche S, Paula Jr TJ, Barros EG, Moreira MA (2000) Inheritance of angular leaf spot resistance in common bean and identification of a RAPD marker linked to a resistance gene. Crop Sci 40:130–133

    Google Scholar 

  • Fourie D, Miklas PN, Ariyarathne HM (2004) Genes conditioning halo blight resistance to races 1, 7, and 9 occur in a tight cluster. Annu Rep Bean Improv Coop 47:103–104

    Google Scholar 

  • Freyre R, Skroch P, Geffroy V, Adam-Blondon AF, Shirmohamadali A, Johnson W, Llaca V, Nodari R, Pereira P, Tsai SM, Tohme J, Dron M, Nienhuis J, Vallejos C, Gepts P (1998) Towards an integrated linkage map of common bean. 4 Development of a core map and alignment of RFLP maps. Theor Appl Genet 97:847–856

    CAS  Google Scholar 

  • Freytag GF, Debouck DG (2002) Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America. Botanical Research Institute, Fort Worth, TX, USA

    Google Scholar 

  • Gaitán-Solís E, Duque MC, Edwards KJ, Thome J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris): isolation, characterization, and cross-species amplification in Phaseolus spp. Crop Sci 42:2128–2136

    Google Scholar 

  • Geffroy V, Creusot F, Falquet J, Sevignac M, Adam-Blondon AF, Bannerot H, Gepts P, Dron M (1998) A family of LRR sequences at the Co-2 locus for anthracnose resistance in Phaseolus vulgaris and its potential use in marker-assisted selection. Theor Appl Genet 96:494–502

    CAS  Google Scholar 

  • Geffroy V, Sévignac M, De Oliveira J, Fouilloux G, Skroch P, Thoquet P Gepts P, Langin T, Dron M (2000) Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of QTL with genes involved in specific resistance. Mol Plant-Micr Interact 13:287–296

    CAS  Google Scholar 

  • Gepts P (1988 a) Phaseolin as an evolutionary markers. In: Gepts P (ed) Genetic Resources of Phaseolus Beans. Kluwer, Dordrecht, pp 215–241

    Google Scholar 

  • Gepts P (1988 b) Provisional linkage map of common bean. Annu Rep Bean Improv Coop 31:20–25

    Google Scholar 

  • Gepts P (1988 c) Report of the genetics committee. Annu Rep Bean Improv Coop 31:15

    Google Scholar 

  • Gepts P (1993) The use of molecular and biochemical markers in crop evolution studies. Evol Biol 27:51–94

    Google Scholar 

  • Gepts P (1998) Origin and evolution of common bean: past events and recent trends. HortScience 33:1124–1130

    Google Scholar 

  • Gepts P (1999) Development of an integrated linkage map. In: Singh SP (ed) Common Bean Improvement in the Twenty-First Century. Kluwer, Dordrecht, pp 52–92

    Google Scholar 

  • Gepts P, Bliss FA (1985) F1 hybrid weakness in the common bean: differential geographic origin suggests two gene pools in cultivated bean germplasm. J Hered 76:447–450

    Google Scholar 

  • Gepts P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. II. Europe and Africa. Econ Bot 42:86–104

    Google Scholar 

  • Gepts P, Debouck D (1991) Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.). In: Schoonhoven A van, Voysest O (eds) Common Beans: Research for Crop Improvement. CAB, Wallingford, UK and CIAT, Cali, Colombia, pp 7–53

    Google Scholar 

  • Gepts P, Osborn TC, Rashka K, Bliss FA (1986) Phaseolin protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): evidence for multiple centers of domestication. Econ Bot 40:451–468

    CAS  Google Scholar 

  • Gepts P, Kmiecik K, Pereira P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. I. The Americas. Econ Bot 42:73–85

    Google Scholar 

  • Gepts P, Nodari R, Tsai SM, Koinange EMK, Llaca V, Gilbertson R, Guzman P (1993) Linkage mapping in common bean. Annu Rep Bean Improv Coop 36:xxiv–xxxviii

    Google Scholar 

  • González-Mejía A, Wong A, Delgado-Salinas A, Papa R, Gepts P (2005) Assessment of inter simple sequence repeat markers to differentiate sympatric wild and domesticated populations of common bean (Phaseolus vulgaris L.). Crop Sci 45:606–615

    Google Scholar 

  • Grafton KF, Chang KC, Venette JR, Vander Wal AJ (1993) Registration of ‘Norstar’ navy bean. Crop Sci 33:1405–1406

    Google Scholar 

  • Guzmán-Maldonado SH, Martínez O, Acosta JA, Guevara-Lara F, Parades-López O (2003) Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci 43:1029–1035

    Google Scholar 

  • Haley SD, Afanador L, Kelly JD (1994 a) Identification and application of a random amplified polymorphic DNA marker for the I gene (potyvirus resistance) in common bean. Phytopathology 84:157–160

    CAS  Google Scholar 

  • Haley SD, Afanador LK, Kelly JD (1994 b) Selection for monogenic resistance traits with coupling-and repulsion-phase RAPD markers. Crop Sci 34:1061–1066

    Google Scholar 

  • Haley SD, Miklas PN, Afanador L, Kelly JD (1994 c) Random amplified polymorphic DNA (RAPD) marker variability between and within gene pools of common bean. J Am Soc Hort Sci 119:122–125

    CAS  Google Scholar 

  • Haley SD, Afanador LK, Miklas PN, Stavely JR, Kelly JD (1994 d) Heterogeneous inbred populations are useful as sources of near-isogenic lines for RAPD marker localization. Theor Appl Genet 88:337–342

    CAS  Google Scholar 

  • Haley SD, Miklas PN, Stavely JR, Byrum J, Kelly JD (1993) Identification of RAPD markers linked to a major rust resistance gene block in common bean. Theor Appl Genet 86:505–512

    CAS  Google Scholar 

  • Hang AN, Silbernagel MJ, Miklas PN (2005) Release of ‘Quincy’ pinto dry edible bean. Annu Rep Bean Improv Coop 48:199–200

    Google Scholar 

  • Harlan JR (1975) Geographic patterns of variation in some cultivated plants. J Hered 66:184–191

    Google Scholar 

  • He S, Yu Z, Vallejos C, Mackenzie S (1995) Pollen fertility restoration by nuclear gene Fr in CMS common bean: an Fr linkage map and the mode of Fr action. Theor Appl Genet 90:1056–1062

    CAS  Google Scholar 

  • Hosfield GL, Uebersax MA, Occena LG (2000) Technological and genetic improvements in dry bean quality and utilization. In: Singh SP (ed) Bean Reseach, Production and Utilization. Proc Idaho Bean Workshop, University of Idaho, Moscow, ID, pp 135–152

    Google Scholar 

  • House WA, Welch RM, Beebe S, Cheng Z (2002) Potential for increasing the amounts of bioavailable zinc in dry beans (Phaseolus vulgaris L.) through plant breeding. J Sci Food Agric 82:1452–1457

    CAS  Google Scholar 

  • Hulbert SH, Ilott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW (1988) Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics 120:947–958

    PubMed  CAS  Google Scholar 

  • Ibarra-Pérez FJ, Ehdaie B, Waines JG (1997) Estimation of outcrossing rate in common bean. Crop Sci 37:60–65

    Google Scholar 

  • Ibarra-Pérez FJ, Acosta-Gallegos JA, Cazares Enriquez B, Castillo-Rosales A, Rosales-Serna R, Kelly JD, Singh SP (2004) Registration of ‘Negro Vizcaya’ shiny black bean. Crop Sci 44:1866–1867

    Google Scholar 

  • Johnson WC, Gepts P (1999) Segregation for performance in recombinant inbred populations resulting from inter-gene pool crosses of common bean (Phaseolus vulgaris L). Euphytica 106:45–56

    Google Scholar 

  • Johnson E, Miklas PN, Stavely JR, Martínez-Cruzado JC (1995) Coupling-and repulsion-phase RAPDs for marker-assisted selection of PI 181996 rust resistance in common bean. Theor Appl Genet 90:659–664

    Google Scholar 

  • Johnson WC, Menéndez C, Nodari R, Koinange EMK, Magnusson S, Singh SP, Gepts P (1996) Association of a seed weight factor with the phaseolin seed storage protein locus across genotypes, environments, and genomes in Phaseolus-Vigna spp.: Sax (1923) revisited. J Agric Genom 2 (previously J Quant Trait Loci): http://www.cabipublishing.org/jag/papers96/paper596/indexp596.html

    Google Scholar 

  • Johnson WC, Guzmán P, Mandala D, Mkandawire ABC, Temple S, Gilbertson RL, Gepts P (1997) Molecular tagging of the bc-3 gene for introgression into Andean common bean. Crop Sci 37:248–254

    CAS  Google Scholar 

  • Jung G, Coyne DP, Skroch P, Nienhuis J, Arnaud-Santana E, Bokosi J, Ariyarathne H, Steadman J, Beaver J, Kaeppler S (1996) Molecular markers associated with plant architecture and resistance to common blight, web blight, and rust in common beans. J Am Soc Hort Sci 121:794–803

    CAS  Google Scholar 

  • Jung G, Skroch P, Coyne DP, Nienhuis J, Ariyarathne H, Kaeppler S, Bassett M (1997) Molecular-marker-based genetic analysis of tepary-bean-derived common bacterial blight resistance in different developmental stages of common bean. J Am Soc Hort Sci 122:329–337

    CAS  Google Scholar 

  • Jung G, Coyne DP, Bokosi JM, Steadman JR, Nienhuis J (1998) Mapping genes for specific and adult plant resistance to rust and abaxial leaf pubescence and their genetic relationship using random amplified polymorphic DNA (RAPD) markers in common bean. J Am Soc Hort Sci 123:859–863

    CAS  Google Scholar 

  • Jung G, Skroch PW, Nienhuis J, Coyne DP, Arnaud-Santana E, Ariyarathne HM, Marita JM (1999) Confirmation of QTL associated with common bacterial blight resistance in four different genetic backgrounds in common bean. Crop Sci 39:1448–1455

    CAS  Google Scholar 

  • Jung G, Ariyarathne HM, Coyne DP, Nienhuis J (2003) Mapping QTL for bacterial brown spot resistance under natural infection in field and seedling stem inoculation in growth chamber in common bean. Crop Sci 43:350–357

    CAS  Google Scholar 

  • Kalavacharla V, Stavely JR, Myers JR, McClean PE (2000) Crg, a gene required for Ur-3-mediated rust resistance in common bean, maps to a resistance gene analog cluster. Mol Plant-Micr Interact 13:1237–1242

    CAS  Google Scholar 

  • Kami J, Gepts P (2000) Development of a BAC library in common bean genotype BAT93. Annu Rep Bean Improv Coop 43:208–209

    Google Scholar 

  • Kami J, Velasquez VB, Debouck DG, Gepts P (1995) Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris. Proc Natl Acad Sci USA 92:1101–1104

    PubMed  CAS  Google Scholar 

  • Kelly JD, Adams MW (1987) Phenotypic recurrent selection in ideotype breeding of pinto beans. Euphytica 36:69–80

    Google Scholar 

  • Kelly JD, Miklas PN (1999) Marker-assisted selection. In: Singh SP (ed) Common Bean Improvement in the Twenty-First Century. Kluwer Academic, The Netherlands, pp 93–123

    Google Scholar 

  • Kelly JD, Vallejo VA (2004 a) A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. HortScience 39:1196–1207

    CAS  Google Scholar 

  • Kelly JD, Vallejo VA (2004 b) QTL analysis of multigenic disease resistance in plant breeding. In: Tuzun S, Bent E (eds) Multigenic and Induced Systemic Resistance in Plants (in press)

    Google Scholar 

  • Kelly JD, Adams MW, Saettler AW, Hosfield GS, Varner GV, Beaver JS, Uebersax MA, Taylor J (1989) Registration of ‘Mayflower’ navy bean. Crop Sci 29:1571–1572

    Google Scholar 

  • Kelly JD, Hosfield GL, Varner GV, Uebersax MA, Brothers ME, Taylor J (1994 a) Registration of ‘Huron’ navy bean. Crop Sci 34:1408

    Google Scholar 

  • Kelly JD, Hosfield GL, Varner GV, Uebersax MA, Haley SD, Taylor J (1994 b) Registration of ‘Raven’ black bean. Crop Sci 34:1406–1407

    Google Scholar 

  • Kelly JD, Hosfield GL, Varner GV, Uebersax MA, Taylor J (1999 a) Registration of ‘Kodiak’ pinto bean. Crop Sci 39:292–293

    Google Scholar 

  • Kelly JD, Hosfield GL, Varner GV, Uebersax MA, Taylor J (1999 b) Registration of ‘Matterhorn’ great northern bean. Crop Sci 39:589–590

    Google Scholar 

  • Kelly JD, Hosfield GL, Varner GV, Uebersax MA, Taylor J (1999 c) Registration of ‘Chinook 2000’ light red kidney bean. Crop Sci 39:293

    Google Scholar 

  • Kelly JD, Hosfield GL, Varner GV, Uebersax MA, Taylor J (2000) Registration of ‘Phantom’ black bean. Crop Sci 40:572

    Google Scholar 

  • Kelly JD, Hosfield GL, Varner GV, Uebersax MA, Taylor J (2001) Registration of ‘Jaguar’ black bean. Crop Sci 41:1447–1448

    Google Scholar 

  • Kelly JD, Gepts P, Miklas PN, Coyne DP (2003) Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crop Res 82:135–154

    Google Scholar 

  • Khairallah MM, Adams MW, Sears BB (1990) Mitochondrial DNA polymorphisms of Malawian bean lines: further evidence for two major gene pools. Theor Appl Genet 80:753–761

    CAS  Google Scholar 

  • Koenig R, Gepts P (1989) Allozyme diversity in wild Phaseolus vulgaris: further evidence for two major centers of genetic diversity. Theor Appl Genet 78:809–817

    Google Scholar 

  • Koenig R, Singh SP, Gepts P (1990) Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 44:50–60

    Google Scholar 

  • Koinange EMK, Gepts P (1992) Hybrid weakness in wild Phaseolus vulgaris L. J Hered 83:135–139

    Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common-bean. Crop Sci 36:1037–1045

    Google Scholar 

  • Kolkman JM, Kelly JD (2003) QTL conferring resistance and avoidance to white mold in common bean. Crop Sci 43:539–548

    CAS  Google Scholar 

  • Kyle MM, Dickson MH (1988) Linkage of hypersensitivity to five viruses with the B locus in Phaseolus vulgaris L. J Hered 79:308–311

    Google Scholar 

  • Lamprecht H (1961) Weitere Kopplungsstudien an Phaseolus vulgaris mit einer Ãœbersicht über die Koppelungsgruppen. Agric Hort Genet 19:333–343

    Google Scholar 

  • Larsen RC, Miklas PN (2004) Generation and molecular mapping of a SCAR marker linked with the Bct gene for resistance to Beet curly top virus in common bean. Phytopathology 94:320–325

    CAS  Google Scholar 

  • López CE, Acosta IF, Jara C, Pedraza F, Gaitán-Solís E, Gallego G, Beebe S, Tohme J (2003) Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology 93:88–95

    Google Scholar 

  • Mahuku G, Montoya C, Henríquez MA, Jara C, Teran H, Beebe S (2004) Inheritance and characterization of angular leaf spot resistance gene present in common bean accession G 10474 and identification of an AFLP marker linked to the resistance gene. Crop Sci 44:1817–1824

    CAS  Google Scholar 

  • Mayek-Pérez N, López-Castaneda C, López-Salinas E, Acosta-Gallegos JA (2001) Inheritance of genetic resistence to Macrophomina phaseolina (Tassi) Goid in common bean. Agrociencia 35:637–648

    Google Scholar 

  • McClean PE, Lee RK, Otto C, Gepts P, Bassett MJ (2002) Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). J Hered 93:148–152

    PubMed  CAS  Google Scholar 

  • McClean PE, Lee RK, Miklas PN (2004) Sequence diversity analysis of dihydroflavonol 4-reductase intron 1 in common bean. Genome 47:266–280

    PubMed  CAS  Google Scholar 

  • McElroy JB (1985) Breeding for dry beans, P. vulgaris L., for common bacterial blight resistance derived from Phaseolus acutifolius A. Gray. PhD dissertation, Cornell University, Ithaca, NY

    Google Scholar 

  • McMillan Jr RT, Davis MJ, McLaughlin HJ, Stavely JR (1998) PCR evaluation of fourteen bean golden mosaic virus (BGMV) resistant snap bean germplasm lines for the presence of the virus. Annu Rep Bean Improv Coop 41:31–32

    Google Scholar 

  • Mejía-Jiménez A, Muñoz C, Jacobsen HJ, Roca WM, Singh SP (1994) Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing. Theor Appl Genet 88:324–331

    Google Scholar 

  • Melotto M, Kelly JD (1998) SCAR markers linked to major disease resistance genes in common bean. Annu Rep Bean Improv Coop 41:64–65

    Google Scholar 

  • Melotto M, Afanador L, Kelly JD (1996) Development of a SCAR marker linked to the I gene in common bean. Genome 39:1216–1219

    PubMed  CAS  Google Scholar 

  • Mendez de Vigo B, Rodriguez C, Paneda A, Giraldez R, Ferreira JJ (2002) Development of a SCAR marker linked to Co-9 in common bean. Annu Rep Bean Improv Coop 45:116–117

    Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    PubMed  CAS  Google Scholar 

  • Mienie CMS, Liebenberg MM, Pretorius ZA, Miklas PN (2005) SCAR markers linked to the Phaseolus vulgaris rust resistance gene Ur-13. Theor Appl Genet 111:972–979

    PubMed  CAS  Google Scholar 

  • Mienie CMS, Naidoo R, Liebenberg MM (2004) Conversion of the RAPD marker for Ur-4 to a co-dominant SCAR marker SA141079/800. Annu Rep Bean Improv Coop 47:261–262

    Google Scholar 

  • Miklas PN, Kelly JD (2002) Registration of two cranberry bean germplasm lines resistant to bean common mosaic and necrosis potyviruses: USCR-7 and USCR-9. Crop Sci 42:673–674

    Google Scholar 

  • Miklas PN, Bosak KM (2004) Marker-assisted backcrossing of QTL for resistance to Sclerotinia white mold in pinto bean. Agron Abstr, Madison, WI

    Google Scholar 

  • Miklas PN, Stavely JR, Kelly JD (1993) Identification and potential use of a molecular marker for rust resistance in common bean. Theor Appl Genet 85:745–749

    CAS  Google Scholar 

  • Miklas PN, Zapata M, Beaver JS, Grafton KF (1994) Registration of four dry bean germplasm resistant to common bacterial blight: ICB-3, ICB-6, ICB-8, and ICB-10. Crop Sci 39:594

    Google Scholar 

  • Miklas PN, Afanador L, Kelly JD (1996 a) Recombination-facilitated RAPD marker-assisted selection for disease resistance in common bean. Crop Sci 36:86–90

    Google Scholar 

  • Miklas PN, Johnson E, Stone V, Beaver JS, Montoya C, Zapata M (1996 b) Selective mapping of QTL conditioning disease resistance in common bean. Crop Sci 36:1344–1351

    CAS  Google Scholar 

  • Miklas PN, Grafton KF, Kelly JD, Steadman JR, Silbernagel MJ (1998 a) Registration of four white mold resistant dry bean germplasm lines: I9365-3, I9365-5, I9365-31, and 92BG-7. Crop Sci 38:1728

    Google Scholar 

  • Miklas PN, Stone V, Urrea CA, Johnson E, Beaver JS (1998 b) Inheritance and QTL analysis of field resistance to ashy stem blight. Crop Sci 38:916–921

    Google Scholar 

  • Miklas PN, Delorme R, Stone V, Daly MJ, Stavely JR, Steadman JR, Bassett MJ, Beaver JS (2000 a) Bacterial, fungal, and viral disease resistance loci mapped in a recombinant inbred common bean population (‘Dorado/Xan176’). J Am Soc Hort Sci 125:476–481

    CAS  Google Scholar 

  • Miklas PN, Larsen RC, Riley R, Kelly JD (2000 b) Potential marker-assisted selection for bc-1 2 resistance to bean common mosaic potyvirus in common bean. Euphytica 116:211–219

    CAS  Google Scholar 

  • Miklas PN, Smith JR, Riley R, Grafton KF, Singh SP, Jung G, Coyne DP (2000 c) Marker-assisted breeding for pyramided resistance to common bacterial blight in common bean. Annu Rep Bean Improv Coop 43:39–40

    Google Scholar 

  • Miklas PN, Stone V, Daly MJ, Stavely JR, Steadman JR, Bassett MJ, Delorme R, Beaver JS (2000 d) Bacterial, fungal, and viral disease resistance loci mapped in a recombinant inbred common bean population (‘Dorado’/XAN176). J Am Soc Hort Sci 125:476–481

    CAS  Google Scholar 

  • Miklas PN, Johnson WC, Delorme R, Gepts P (2001) QTL conditioning physiological resistance and avoidance to white mold in dry bean. Crop Sci 41:309–315

    Google Scholar 

  • Miklas PN, Hang AN, Kelly JD, Strausbaugh CA, Forster RL (2002 a) Registration of three kidney bean germplasm lines resistant to bean common mosaic and necrosis potyviruses: USLK-2 light red kidney, USDK-4 dark red kidney, and USWK-6 white kidney. Crop Sci 42:674–675

    Google Scholar 

  • Miklas PN, Pastor-Corrales MA, Jung G, Coyne DP, Kelly JD, McClean PE, Gepts P (2002 b) Comprehensive Linkage map of bean rust resistance genes. Annu Rep Bean Improv Coop 45:125–129

    Google Scholar 

  • Miklas PN, Coyne DP, Grafton KF, Mutlu N, Reiser J, Lindgren DT, Singh SP (2003 a) A major QTL for common bacterial light resistance derives from the common bean great northern landrace cultivar Montana No. 5. Euphytica 131:137–146

    CAS  Google Scholar 

  • Miklas PN, Delorme R, Riley R (2003 b) Identification of QTL conditioning resistance to white mold in snap bean. J Am Soc Hort Sci 128:564–570

    CAS  Google Scholar 

  • Miklas PN, Kelly JD, Singh SP (2003 c) Registration of anthracnose-resistant pinto bean germplasm line USPTANT-1. Crop Sci 43:1889

    Google Scholar 

  • Miklas PN, Grafton KF, Bosak KM (2005 a) Molecular breeding for resistance to white mold in common bean. In: 3rd USDA-ARS, Sclerotinia Initiative Workshop, 19–20 January 2005, Minneapolis, MN

    Google Scholar 

  • Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131

    CAS  Google Scholar 

  • Miklas PN, Smith JR, Singh SP (2005 b) Release of USDKCBB-15 dark red kidney bean germplasm line with improved resistance to common bacterial blight. Annu Rep Bean Improv Coop 48:192–193

    Google Scholar 

  • Mmbaga M, Steadman JR, Stavely JR (1996) The use of host resistance in disease management of rust in common bean. Integr Pest Mgt Rev 1:191–200

    Google Scholar 

  • Mok DWS, Mok MC (1977) Monosomics in common bean, Phaseolus vulgaris. Theor Appl Genet 49:145–149

    Google Scholar 

  • Morales FJ, Singh SP (1993) Breeding for resistance to bean golden mosaic virus in an interracial population of Phaseolus vulgaris L. Euphytica 67:59–63

    Google Scholar 

  • Moscone EA, Klein F, Lambrou M, Fuchs J, Schweizer D (1999) Quantitative karyotyping and dual-color FISH mapping of 5S and 18S–25S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42:1224–1233

    PubMed  CAS  Google Scholar 

  • Murray JD, Michaels TE, Cardona C, Schaafsma AW, Pauls KP (2004) Quantitative trait loci for leafhopper (Empoasca fabae and Empoasca kraemeri) resistance and seed weight in the common bean. Plant Breed 123:474–479

    CAS  Google Scholar 

  • Murray J, Larsen J, Michaels TE, Schaafsma A, Vallejos CE, Pauls KP (2002) Identification of putative genes in bean (Phaseolus vulgaris) genomic (Bng) RFLP clones and their conversion to STSs. Genome 45:1013–1024

    PubMed  CAS  Google Scholar 

  • Mutlu N, Miklas P, Reiser J, Coyne D (2005 a) Backcross breeding for improved resistance to common bacterial blight in pinto bean (Phaseolus vulgaris L.). Plant Breed 124:282–287

    Google Scholar 

  • Mutlu N, Miklas PN, Steadman JR, Vidaver AV, Lindgren D, Reiser J, Pastor-Corrales MA (2005 b) Registration of common bacterial blight resistant pinto bean germplasm line ABCP-8. Crop Sci 45:806–807

    Google Scholar 

  • Myers JR (2000) Tomorrow’s snap bean cultivars. In: Singh SP (ed) Bean research, production and utilization. In: Proc Idaho Bean Workshop Univ of Idaho, Moscow, ID, pp 39–51

    Google Scholar 

  • Myers JR, Weeden NF (1988) A proposed revision of guidelines for genetic analysis in Phaseolus vulgaris L. Annu Rep Bean Improv Coop 31:16–19

    Google Scholar 

  • Myers JR, Baggett JR (1999) Improvement of snap bean. In: Singh SP (ed) Common Bean Improvement in the Twenty-First Century. Kluwer Publ, Dordrecht, pp 289–329

    Google Scholar 

  • Myers JR, Davis J, Yorgey B, Kean D (2004) Mapping quantitative trait loci for green bean traits of horticultural importance. Annu Rep Bean Improv Coop 47:75–76

    Google Scholar 

  • Nagata RT, Bassett MJ (1984) Linkage relationships of nine induced mutants in common bean. J Am Soc Hort Sci 109:517–519

    Google Scholar 

  • Navarro F, Sass M, Nienhuis J (2003) Identification and mapping bean root rot resistance in a population of Mesoamerican × Andean origin. Annu Rep Bean Improv Coop 46:213–214

    Google Scholar 

  • Nemchinova YP, Stavely JR (1998) Development of SCAR primers for the Ur-3 rust resistance gene in common bean. Phytopathology 88:S67

    Google Scholar 

  • Nienhuis J, Singh SP (1986) Combining ability analyses and relationships among yield, yield components, and architectural traits in dry bean. Crop Sci 26:21–27

    Google Scholar 

  • Nietsche S, Borém A, Carvalho GA, Rocha RC, Paula Jr TJ, De Barros EG, Moreira MA (2000) RAPD and SCAR markers linked to a gene conferring resistance to angular leaf spot in common bean. J Phytopathol 148:117–121

    CAS  Google Scholar 

  • Nodari RO, Tsai SM, Gilbertson RL, Gepts P (1993 a) Towards an integrated linkage map of common bean. II. Development of an RFLP-based linkage map. Theor Appl Genet 85:513–520

    CAS  Google Scholar 

  • Nodari RO, Tsai SM, Guzmán P, Gilbertson RL, Gepts P (1993 b) Towards an integrated linkage map of common bean. 3. Mapping genetic factors controlling host-bacterium interactions. Genetics 134:341–350

    PubMed  CAS  Google Scholar 

  • Olaya G, Abawi GS, Weeden NF (1996) Inheritance of the resistance to Macrophomina phaseolina and identification of RAPD markers linked to the resistance genes in beans. Phytopathology 86:674–679

    CAS  Google Scholar 

  • Oliveira EJ de, Alzate-Marin AL, de Melo CLP, Borém A, de Barros EG, Moreira MA (2002) Backcross assisted by RAPD markers for the introgression of angular leaf spot resistance genes in common bean cultivars. Annu Rep Bean Improv Coop 45:142–143

    Google Scholar 

  • Osborn TC, Blake T, Gepts P, Bliss FA (1986) Bean arcelin. 2. Genetic variation, inheritance and linkage relationships of a novel seed protein of Phaseolus vulgaris L. Theor Appl Genet 71:847–855

    CAS  Google Scholar 

  • Park SJ, Tu JC (1986) Association between BCMV resistant I gene and eye color of cv. Steubean. Annu Rep Bean Improv Coop 29:4–5

    Google Scholar 

  • Park SO, Coyne DP, Steadman JR (2004 a) Development of a SCAR marker linked to the Ur-7 gene in common bean. Annu Rep Bean Improv Coop 47:269–270

    Google Scholar 

  • Park SO, Coyne DP, Steadman JR, Crosby KM, Brick MA (2004 b) RAPD and SCAR markers linked to the Ur-6 Andean gene controlling specific rust resistance in common bean. Crop Sci 44:1799–1807

    CAS  Google Scholar 

  • Park SO, Coyne DP, Steadman JR, Skroch PW (2001) Mapping of QTL for resistance to white mold diseases in common bean. Crop Sci 41:1253–1262

    CAS  Google Scholar 

  • Park SO, Coyne DP, Steadman JR, Skroch PW (2003) Mapping of the Ur-7 gene for specific resistance to rust in common bean. Crop Sci 43:1470–1476

    CAS  Google Scholar 

  • Pastor-Corrales MA (2003) Sources, genes for resistance, and pedigree of 52 rust amd mosaic resistant dry bean germplasm lines released by the USDA Beltsville bean project in collaboration with the Michigan, Nebraska and North Dakota Agricultural Experiment Stations. Annu Rep Bean Improv Coop 46:235–241

    Google Scholar 

  • Pastor-Corrales MA, Stavely JR, Kelly JD, Grafton KF, Steadman JR, Coyne DP, Lindgren DT, Scully BT (2001) Rust and mosaic resistant bean germplasm releases, 1997–1999. Annu Rep Bean Improv Coop 44:101–102

    Google Scholar 

  • Pedraza F, Gallego G, Beebe S, Tohme J (1997) Marcadores SCAR y RAPD para la resistencia a la bacteriosis comun (CBB). In: Singh SP, Voysest O (eds) Taller de mejoramiento de frijol para el siglo XXI: Bases para una estrategia para America Latina. CIAT, Cali, Colombia, USA, pp 130–134

    Google Scholar 

  • Pedrosa A, Vallejos CE, Bachmair A (2003) Integration of common bean (Phaseolus vulgaris L.) linkage and chromosomal maps. Theor Appl Genet 106:205–212

    PubMed  CAS  Google Scholar 

  • Pereira PAA, Miranda BD, Attewell JR, Kmiecik KA, Bliss FA (1993) Selection for increased nodule number in common bean (Phaseolus vulgaris L.). Plant Soil 148:203–209

    Google Scholar 

  • Pompeu AS (1982) Catu, Aete-3, Aroana-80, Moruna-80, Carioca-80 e Ayso: novos cultivares de feijoeiro. Bragantia 41:213–218

    Google Scholar 

  • Porch TG (2001) Genetics and applications of heat tolerance in common bean. PhD dissertation, Cornell University, Ithaca, NY

    Google Scholar 

  • Posa-Macalincag MCT, Hosfield GL, Grafton KF, Uebersax MA, Kelly JD (2002) Quantitative trait loci (QTL) analysis of canning quality traits in kidney bean (Phaseolus vulgaris L.). J Am Soc Hort Sci 127:608–615

    CAS  Google Scholar 

  • Queiroz VT, Sousa CS, Costa MR, Sanglad DA, Arruda KMA, Souza TLPO, Ragagnin VA, Barros EG, Moreira MA (2004 a) Development of SCAR markers linked to common bean anthracnose resistance genes Co-4 and Co-6. Annu Rep Bean Improv Coop 47:249–250

    Google Scholar 

  • Queiroz VT, Sousa CS, Costa MR, Sanglad DA, Arruda KMA, Souza TLPO, Ragagnin VA, Barros EG, Moreira MA (2004 b) Development of SCAR markers linked to common bean angular leaf spot resistance genes. Annu Rep Bean Improv Coop 47:237–238

    Google Scholar 

  • Queiroz VT, Sousa CS, Souza TLPO, Costa MR, Sanglad DA, Ragagnin VA, Barros EG, Moreira MA (2004 c) SCAR marker linked to the common bean rust resistance gene Ur-11. Annu Rep Bean Improv Coop 47:271–272

    Google Scholar 

  • Rivkin ML, Vallejos CE, McClean PE (1999) Disease resistance related sequences in common bean. Genome 42:41–47

    PubMed  CAS  Google Scholar 

  • Román-Avilés B, Kelly JD (2005) Identification of QTL conditioning resistance to Fusarium root rot in Phaseolus vulgaris L. J Am Soc Hort Sci (accepted)\CEnoteease update

    Google Scholar 

  • Rosales-Serna R, Ramírez-Vallejo P, Acosta-Gallegos JA, Castillo-González F, Kelly JD (2000) Grain yield and drought tolerance of common bean under field conditions. Agrociencia 34:153–165

    Google Scholar 

  • Sax K (1923) The association of size differences with seed coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560

    Google Scholar 

  • Sanchez-Valdez I, Acosta-Gallegos JA, Ibarra-Pérez FJ, Rosales-Serna R, Singh SP (2004) Registration of ‘Pinto Saltio’ common bean. Crop Sci 44:1865–1866

    Google Scholar 

  • Sartorato A, Nietsche S, Barros EG, Moreira MA (2000) RAPD and SCAR markers linked to resistance gene to angular leaf spot in common beans. Fitopatol Bras 25:637–642

    CAS  Google Scholar 

  • Schneider K, Brothers M, Kelly JD (1997 a) Marker-assisted selection to improve drought resistance in common bean. Crop Sci 37:51–60

    CAS  Google Scholar 

  • Schneider KA, Rosales-Serna R, Ibarra-Perez F, Cazares-Enriquez B, Acosta-Gallegos JA, Ramírez-Vallejo P, Wassimi N, Kelly JD (1997 b) Improving common bean performance under drought stress. Crop Sci 37:43–50

    Google Scholar 

  • Schneider KA, Grafton KF, Kelly JD (2001) Genetic and QTL analysis of resistance to Fusarium Root rot in bean. Crop Sci 41:535–542

    CAS  Google Scholar 

  • Scott ME, Michaels TE (1992) Xanthomonas resistance of Phaseolus interspecific cross selections confirmed by field performance. HortScience 27:348–350

    Google Scholar 

  • Silbernagel MJ (1994) Release of pinto breeding line 92US-1006 with I bc2 2 resistance to bean common mosaic virus. Annu Rep Bean Improv Coop 37:246

    Google Scholar 

  • Silva LO, Araujo Moraes E, Aidar H, Thung MDT, Gutiérrez JA, Terán H, Morales FJ, Pastor-Corrales MA, Schwartz HF, Singh SP (2003) Registration of ‘EMGOPA 201-Ouro’ common bean. Crop Sci 43:1881

    Google Scholar 

  • Singh SP (1982) A key for identification of different growth habits of frijol Phaseolus vulgaris L. Annu Rep Bean Improv Coop 25:92–95

    Google Scholar 

  • Singh SP (1989) Patterns of variation in cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 43:39–57

    Google Scholar 

  • Singh SP (1992) Common bean improvement in the tropics. Plant Breed Rev 10:199–269

    Google Scholar 

  • Singh SP (1994) Gamete selection for simultaneous improvement of multiple traits in common bean. Crop Sci 34:352–355

    Google Scholar 

  • Singh SP (1995) Selection for water-stress tolerance in interracial populations of common bean. Crop Sci 35:118–124

    Google Scholar 

  • Singh SP (ed) (1999 a) Common Bean Improvement in the Twenty-First Century. Kluwer, Dordrecht

    Google Scholar 

  • Singh SP (1999 b) Production and utilization. In: Singh SP (ed) Common Bean Improvement in the Twenty-First Century. Kluwer, Dordrecht, pp 1–24

    Google Scholar 

  • Singh SP (ed) (2000) Bean research, production, and utilization. In: Proc Idaho Bean Workshop, University of Idaho, Moscow, ID

    Google Scholar 

  • Singh SP (2001 a) Broadening the genetic base of common bean cultivars: a review. Crop Sci 41:1659–1675

    Google Scholar 

  • Singh SP (2001 b) The common bean and its genetic improvement. In: Kang MS (ed) Crop Improvement: Challenges in the 21st Century. Food Products Press, New York, pp 161–192

    Google Scholar 

  • Singh SP (2005) Common Bean (Phaseolus vulgaris L.). In: Singh RJ, Jauhar PP (eds) Genetic Resources, Chromosome Engineering, and Crop Improvement Series I — Grain Legumes. CRC, Boca Raton, FL, pp 11–48

    Google Scholar 

  • Singh SP, Gutiérrez JA (1984) Geographical distribution of DL1 and DL2 genes causing hybrid dwarfism in Phaseolus vulgaris L., their association with seed size, and their significance to breeding. Euphytica 33:337–345

    Google Scholar 

  • Singh SP, Muñoz CG (1999) Resistance to common bacterial blight among Phaseolus species and common bean improvement. Crop Sci 39:80–89

    Google Scholar 

  • Singh SP, Cajiao C, Gutiérrez JA, García J, Pastor-Corrales MA, Morales FJ (1989) Selection for seed yield in intergene pool crosses of common bean. Crop Sci 29:1126–1131

    Google Scholar 

  • Singh SP, Gepts P, Debouck DG (1991 a) Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 45:379–396

    Google Scholar 

  • Singh SP, Gutiérrez JA, Molina A, Urrea C, Gepts P (1991 b) Genetic diversity in cultivated common bean. II. Markerbased analysis of morphological and agronomic traits. Crop Sci 31:23–29

    CAS  Google Scholar 

  • Singh SP, Molina A, Urrea CA, Gutiérrez JA (1993) Use of interracial hybridization in breeding the race Durango common bean. Can J Plant Sci 73:785–793

    Google Scholar 

  • Singh SP, Molina A, Gepts P (1995) Potential of wild common bean for seed yield improvement of cultivars in the tropics. Can J Plant Sci 75:807–813

    Google Scholar 

  • Singh SP, Cardona C, Morales FJ, Pastor-Corrales MA, Voysest O (1998) Gamete selection for upright carioca bean with resistance to five diseases and a leafhopper. Crop Sci 38:666–672

    Google Scholar 

  • Singh SP, Morales FJ, Miklas PN, Terán H (2000) Selection for bean golden mosaic resistance in intra-and inter-racial bean populations. Crop Sci 40:1565–1572

    Google Scholar 

  • Singh SP, Nodari R, Gepts P (1991 c) Genetic diversity in cultivated common bean. I. Allozymes. Crop Sci 31:19–23

    CAS  Google Scholar 

  • Singh SP, Terán H, Muñoz CG, Takegami JC (1999) Two cycles of recurrent selection for seed yield in common bean. Crop Sci 39:391–397

    Google Scholar 

  • Singh SP, Terán H, Gutiérrez JA, Pastor-Corrales MA, Schwartz HF, Morales FJ (2003 a) Registration of A 339, MAR 1, MAR 2, and MAR 3 angular leaf spot and anthracnose resistant common bean germplasm. Crop Sci 43:1886–1887

    Google Scholar 

  • Singh SP, Terán H, Muñoz CG, Osorno JM, Takegami JC, Thung MDT (2003 b) Low soil fertility tolerance in landraces and improved common bean genotypes. Crop Sci 43:110–119

    Google Scholar 

  • Skroch P, Jung G, Nienhuis J, Coyne D (1996) Integration of RAPD marker linkage maps and comparative mapping of QTL for disease resistance in common bean. Annu Rep Bean Improv Coop 39:48–49

    Google Scholar 

  • Sonnante G, Stockton T, Nodari RO, Becerra Velásquez VL, Gepts P (1994) Evolution of genetic diversity during the domestication of common-bean (Phaseolus vulgaris L.). Theor Appl Genet 89:629–635

    Google Scholar 

  • Souza TLPO, Ragagnin VA, Alzate-Marin AL, Faleiro FG, Moreira MA, Barros EG (2003) Backcross assisted by RAPD markers to develop common bean lines with carioca type grains containing the Ur-11 rust resistance gene. Annu Rep Bean Improv Coop 46:195–196

    Google Scholar 

  • Stavely JR (1984) Pathogenic specialization in Uromyces phaseoli in the United States and rust resistance in beans. Plant Dis 68:95–99

    Google Scholar 

  • Stavely JR, Kelly JD, Grafton KF (1994) BelMiDak-rust-resistant navy dry bean germplasm lines. HortScience 29:709–710

    Google Scholar 

  • Stavely JR, Grafton KF, Kelly JD (1998) Release of BelDakMi-RMR-14 erect, short vine, rust, and mosaic resistant pinto bean germplasm line. USDA-ARS Germplasm Release Notice, Beltsville, MD, p 3

    Google Scholar 

  • Stewart-Williams KD, Myers JR, Dennis MF, Hayes R, Strausbaugh C, Singh SP (2003) Registration of great northern common bean germplasm UI98-209G. Crop Sci 43:2312–2313

    Google Scholar 

  • Strausbaugh CA, Myers JR, Forster RL, McClean PE (1999) Bc-1 and Bc-u two loci controlling bean common mosaic virus resistance in common bean are linked. J Am Soc Hort Sci 124:644–648

    Google Scholar 

  • Tar’an B, Michaels TE, Pauls KP (2001) Mapping genetic factors affecting the reaction to Xanthomonas axonopodis pv. phaseoli in Phaseolus vulgaris L. under field conditions. Genome 44:1046–1056

    CAS  Google Scholar 

  • Tar’an B, Michaels TE, Pauls KP (2002) Genetic mapping of agronomic traits in common bean. Crop Sci 42:544–556

    CAS  Google Scholar 

  • Temple SR, Morales FJ (1986) Linkage of dominant hypersensitive resistance to bean common mosaic virus to seed color in Phaseolus vulgaris L. Euphytica 35:331–333

    Google Scholar 

  • Terán H, Singh SP (2002) Comparison of sources and lines selected for drought resistance in common bean. Crop Sci 42:64–70

    PubMed  Google Scholar 

  • Teverson DM (1991) Genetics of pathogenicity and resistance in the halo-blight disease of beans in Africa. PhD dissertation, University of Birmingham, UK

    Google Scholar 

  • Urrea CA, Singh SP (1994) Comparison of mass, F2-derived family, and single-seed — descent selection methods in an interracial population of common bean. Can J Plant Sci 74:461–464

    Google Scholar 

  • Urrea CA, Singh SP (1995) Comparison of recurrent and congruity backcrossing for interracial hybridization in common bean. Euphytica 81:21–26

    Google Scholar 

  • Urrea CA, Miklas PN, Beaver JS, Riley RH (1996) A codominant randomly amplified polymorphic DNA (RAPD) marker useful for indirect selection of BGMV resistance in common bean. J Am Soc Hort Sci 121:1035–1039

    CAS  Google Scholar 

  • Valladares-Sanchez NE, Coyne DP, Schuster ML (1979) Differential reaction of leaves and pods of Phaseolus germplasm to strains of Xanthomonas phaseoli and transgressive segregation for tolerance from crosses of susceptible germplasm. J Am Soc Hort Sci 104:648–654

    Google Scholar 

  • Vallejo V, Kelly JD (2001) Development of a SCAR marker linked to Co-5 gene in common bean. Annu Rep Bean Improv Coop 44:121–122

    Google Scholar 

  • Vallejo V, Kelly JD (2002) The use of AFLP analysis to tag the Co1 2 gene conditioning resistance to bean anthracnose. In: Plant & Animal Genome X Conf, San Diego. http://www.pag-intl.org

    Google Scholar 

  • Vallejos CE (1994) Phaseolus vulgaris — The common bean. In: Phillips RL, Vasil IK (eds) DNA-Based Markers in Plants. Kluwer, Dordrecht, pp 261–270

    Google Scholar 

  • Vallejos CE, Chase CD (1991 a) Linkage between isozyme markers and a locus affecting seed size in Phaseolus vulgaris L. Theor Appl Genet 81:413–419

    Google Scholar 

  • Vallejos CE, Chase CD (1991 b) Extended map for the phaseolin linkage group of Phaseolus vulgaris L. Theor Appl Genet 82:353–357

    CAS  Google Scholar 

  • Vallejos CE, Sakiyama NS, Chase CD (1992) A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131:733–740

    PubMed  CAS  Google Scholar 

  • Vallejos CE, Skroch PW, Nienhuis J (2001) Phaseolus vulgaris — The common bean integration of RFLP and RAPDbased linkage maps. In: Phillips RL, Vasil IK (eds) DNA Based Markers in Plants, 2nd edn. Kluwer, Dordrecht, pp 301–317

    Google Scholar 

  • Voysest VO (2000) Mejoramiento genético del frijol (Phaseolus vulgaris L.): Legado de variedades de América Latina 1930–1999. CIAT, Cali, Colombia

    Google Scholar 

  • Walters KJ, Hosfield GL, Uebersaz MA, Kelly JD (1997) Navy bean canning quality: Correlations, heritability estimates, and randomly amplified polymorphic DNA markers associated with component traits. J Am Soc Hort Sci 122:238–343

    Google Scholar 

  • Weeden NF (1984) Distinguishing among white seeded bean cultivars by means of allozyme genotypes. Euphytica 33:199–208

    CAS  Google Scholar 

  • Weeden NF, Liang CY (1985) Detection of a linkage between white flower color and EST-2 in common bean. Annu Rep Bean Improv Coop 28:87–88

    Google Scholar 

  • Welch RM, House WA, Beebe S, Cheng Z (2000) Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.) seeds. J Agric Food Chem 48:3576–3580

    PubMed  CAS  Google Scholar 

  • White J, Laing DR (1989) Photoperiod response of flowering in diverse genotypes of common bean (Phaseolus vulgaris). Field Crops Res 22:113–128

    Google Scholar 

  • White JW, Kornegay JL, Castillo J, Cajiao CH, Tejada G (1992) Effect of growth habit on yield of large-seeded bush cultivars of common bean. Field Crops Res 29:151–161

    Google Scholar 

  • Young RA, Melotto M, Nodari RO, Kelly JD (1998) Marker assisted dissection of the oligogenic anthracnose resistance in common bean cultivar, G 2333. Theor Appl Genet 96:87–94

    CAS  Google Scholar 

  • Yu ZH, Stall RE, Vallejos CE (1998) Detection of genes for resistance to common bacterial blight of beans. Crop Sci 38:1290–1296

    CAS  Google Scholar 

  • Yu KF, Park SJ, Poysa V (1999) Abundance and variation of microsatellite DNA sequences in beans (Phaseolus and Vigna). Genome 42:27–34

    CAS  Google Scholar 

  • Yu K, Park SJ, Poysa V (2000 a) Marker-assisted selection of common beans for resistance to common bacterial blight: efficiency and economics. Plant Breed 119:411–416

    CAS  Google Scholar 

  • Yu K, Park S, Poysa V, Gepts P (2000 b) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434

    PubMed  CAS  Google Scholar 

  • Yu K, Park SJ, Zhang B, Haffner M, Poysa V (2004) An SSR marker in the nitrate reductase gene of common bean is tightly linked to a major gene conferring resistance to common bacterial blight. Euphytica 138:89–95

    CAS  Google Scholar 

  • Zizumbo-Villarreal D, Colunga-GarcíaMarín P, Payró de la Cruz E, Delgado-Valerio P, Gepts P (2005) Population structure and evolutionary dynamics of wild-weedy-domesticated complexes of common bean in a Mesoamerican region. Crop Sci 45:1073–1083

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miklas, P.N., Singh, S.P. (2007). Common Bean. In: Kole, C. (eds) Pulses, Sugar and Tuber Crops. Genome Mapping and Molecular Breeding in Plants, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34516-9_1

Download citation

Publish with us

Policies and ethics