Skip to main content

Misregulation of Tau Alternative Splicing in Neurodegeneration and Dementia

  • Chapter
Alternative Splicing and Disease

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 44))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreadis A, Broderick JA, Kosik KS (1995) Relative exon affinities and subopti-mal splice site signals lead to non-equivalence of two cassette exons. Nucleic Acids Res 23: 3585-3593

    Article  CAS  PubMed  Google Scholar 

  • Andreadis A (2005) Tau gene alternative splicing: expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim Biophys Acta 1739: 91-103

    CAS  PubMed  Google Scholar 

  • Arikan M, Memmott J, Lafyatis R, Screaton G, Stamm S, Andreadis A (2002) Modulation of the membrane-binding projection domain of tau protein: splicing regulation of exon 3. Mol. Brain Res 101: 109-121

    Article  CAS  PubMed  Google Scholar 

  • Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42: 631-639

    CAS  PubMed  Google Scholar 

  • Askanas V, Engel WK (2002) Inclusion-body myositis and myopathies: different eti-ologies, possibly similar pathogenic mechanisms. Curr Opin Neurol. 15: 525-531

    Article  PubMed  Google Scholar 

  • Barbato C, Canu N, Zambrano N, Serafino A, Minopoli G, Ciotti MT, Amadoro G, Russo T, Calissano P (2005) Interaction of Tau with Fe65 links tau to APP. Neurobiol Dis 18: 399-408

    Article  CAS  PubMed  Google Scholar 

  • Barbaux S, Niaudet P, Gubler MC, Grunfeld JP, Jaubert F, Kuttenn F, Fekete CN, Souleyreau-Therville N, Thibaud E, Fellous M, McElreavey K (1997) Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 17: 467-470

    Article  CAS  PubMed  Google Scholar 

  • Bierer LM, Hof PR, Purohit DP, Carlin L, Schmeidler J, Davis KL, Perl DP (1995) Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch Neurol 52: 81-88

    CAS  PubMed  Google Scholar 

  • Billingsley ML, Kincaid RL (1997) Regulated phosphorylation and dephosphory-lation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 323: 577-591

    CAS  PubMed  Google Scholar 

  • Black DL (2003) Mechanisms of alternative pre-mRNA splicing. Ann Rev Biochem 72: 291-336

    Article  CAS  PubMed  Google Scholar 

  • Black MM, Slaughter T, Moshiach S, Obrocka M, Fischer I (1996) Tau is enriched on dynamic microtubules in the distal region of growing axons. J Neurosci 16: 3601-3619

    CAS  PubMed  Google Scholar 

  • Blencowe BJ (2000) Exonic splicing enhancers: Mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci 25: 106-110

    Article  CAS  PubMed  Google Scholar 

  • Brandt R, Léger J, Lee G (1995) Interaction of tau with the neural plasma mem-brane mediated by tau’s amino-terminal projection domain. J Cell Biol 131: 1327-1340

    Article  CAS  PubMed  Google Scholar 

  • Brandt R, Hundelt M, Shahani N (2005) Tau alteration and neuronal degene-ration in tauopathies: mechanisms and models. Biochim Biophys Acta 1739: 331-354

    CAS  PubMed  Google Scholar 

  • Broderick J, Wang J, Andreadis A (2004) Heterogeneous nuclear ribonucleoprotein E2 binds to tau exon 10 and moderately activates its splicing. Gene 331: 107-114

    Article  CAS  PubMed  Google Scholar 

  • Canu N, Dus L, Barbato C, Ciotti M, Brancolini C, Rinaldi AM, Novak M, Cattaneo A, Bradbury A, Calissano P (1998) Tau cleavage and dephosphorylation in cerebellar granule neurons undergoing apoptosis. J Neurosci 18: 7061-7074

    CAS  PubMed  Google Scholar 

  • Chabot B, Blanchette M, Lapierre I, Branche H (1997) An intron element modu-lating 5′ splice site selection in the hnRNP A1 pre-mRNA interacts with hnRNPA1. Mol Cell Biol 17: 1776-1786

    CAS  PubMed  Google Scholar 

  • Charlet B N, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA (2002) Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 10: 45-53

    Article  Google Scholar 

  • Chen F, David D, Ferrari A, Gotz J (2004) Posttranslational modifications of tau -role in human tauopathies and modeling in transgenic animals. Curr Drug Targets 5: 503-15.

    Article  CAS  PubMed  Google Scholar 

  • Clark LN, Poorkaj P, Wszolek Z, Geschwind DH, Nasreddine ZS, Miller B, Li D, Payami H, Awert F, Markopoulou K, Andreadis A, D’Souza I, Lee VM, Reed L, Trojanowski JQ, Zhukareva V, Bird T, Schellenberg G, Wilhelmsen KC (1998) Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromo-some 17. Proc. Natl. Acad. Sci .USA 95 (1998) 13103-13107

    Article  CAS  PubMed  Google Scholar 

  • Coulter LR, Landree MA, Cooper TA (1997) Identification of a new class of exonic splicing enhancers by in vivo selection. Mol Cell Biol 17: 2143-2150

    CAS  PubMed  Google Scholar 

  • Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP (2001) Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 11: 1179-1187

    Google Scholar 

  • Del Gatto F, Gesnel MC, Breathnach R (1996) The exon sequence TAGG can inhibit splicing. Nucl Acids Res 24: 2017-2021

    Article  CAS  PubMed  Google Scholar 

  • Del Gatto-Konczak F, Olive M, Gesnel MC, Breathnach R (1999) HnRNPA1 recruited to an exon in vivo can function as an exon splicing silencer. Mol Cell Biol 19: 251-260

    CAS  PubMed  Google Scholar 

  • DiTella M, Feiguin F, Morfini G, Cáceres A (1994) Microfilament-associated growth cone component depends upon tau for its intracellular localization. Cell Motil Cytoskel 29: 117-130

    Article  CAS  Google Scholar 

  • Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3: 195-205

    Article  CAS  PubMed  Google Scholar 

  • Drubin DG, Kobayashi S, Kellogg D, Kirschner M (1988) Regulation of microtubule protein levels during cellular morphogenesis in nerve growth factor-treated PC12 cells. J Cell Biol 107: 2551-2561

    Article  CAS  PubMed  Google Scholar 

  • D’Souza I, Poorkaj P, Hong M, Nochlin D, Lee VM, Bird TD, Schellenberg GD (1999) Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc Natl Acad Sci USA 96: 5598-5603

    Article  PubMed  Google Scholar 

  • D’Souza I, Schellenberg GD (2000) Determinants of 4-repeat tau expression. Coordination between enhancing and inhibitory splicing sequences for exon 10 inclusion. J Biol Chem 275: 17700-17709

    Article  PubMed  Google Scholar 

  • D’Souza I, Schellenberg GD (2002) Tau exon 10 expression involves a bipartite intron 10 regulatory sequence and weak 5′ and 3′ splice sites. J Biol Chem 277: 26587-26599

    Article  PubMed  CAS  Google Scholar 

  • Ermekova KS, Chang A, Zambrano N, de Candia P, Russo T, Sudol M (1998) Proteins implicated in Alzheimer disease. The role of FE65, a new adapter which binds to beta-amyloid precursor protein. Adv Exp Med Biol 446: 161-180

    CAS  PubMed  Google Scholar 

  • Esclaire F, Terro F, Yardin C, Hugon J (1998) Neuronal apoptosis is associated with a decrease in tau mRNA expression. Neuroreport 9: 1173-1177

    Article  CAS  PubMed  Google Scholar 

  • Fasulo L, Ugolini G, Visintin M, Bradbury A, Brancolini C, Verzillo Novak VM, Cattaneo A (2000 The neuronal microtubule-associated protein tau is a substrate for caspase-3 and an effector of apoptosis. J Neurochem 75: 624-633

    Article  CAS  PubMed  Google Scholar 

  • Faustino, NA, Cooper TA (2003) Pre-mRNA splicing and human disease. Genes Dev 17: 419-437

    Article  CAS  PubMed  Google Scholar 

  • Feinstein SC, Wilson L (2005) Inability of tau to properly regulate neuronal micro-tubule dynamics: a loss-of-function mechanism by which tau might mediate neu-ronal cell death. Biochim Biophys Acta: 268-279

    Google Scholar 

  • Gao QS, Memmott J, Lafyatis R, Stamm S, Screaton G, Andreadis A (2000) Complex regulation of tau exon 10, whose missplicing causes frontotemporal dementia. J Neurochem 74: 490-500

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989a) Multiple isoforms of human microtubule-associated protein tau: Sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3: 519-526

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989b) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: Differential expression of tau protein mRNAs in human brain. EMBO J 8: 393-399

    CAS  PubMed  Google Scholar 

  • Goedert M, Jakes R (2005) Mutations causing neurodegenerative tauopathies. Biochim Biophys Acta 1739: 240-250

    CAS  PubMed  Google Scholar 

  • Gorath M, Stahnke T, Mronga T, Goldbaum O, Richter-Landsberg C (2001) Developmental changes of tau protein and mRNA in cultured rat brain oligo-dendrocytes. Glia 36: 89-101

    Article  CAS  PubMed  Google Scholar 

  • Grabowski PJ, Black DL (2001) Alternative RNA splicing in the nervous system. Prog Neurobiol 65: 289-308

    Article  CAS  PubMed  Google Scholar 

  • Graveley BR (2000) Sorting out the complexity of SR protein functions. RNA 6: 1197-1211

    Article  CAS  PubMed  Google Scholar 

  • Graveley BR (2001) Alternative splicing: Increasing diversity in the proteomic world, Trends Genet 17: 100-107

    Article  CAS  PubMed  Google Scholar 

  • Grover A, Houlden H, Baker M, Adamson J, Lewis J, Prihar G, Pickering-Brown S, Duff K, Hutton M (1999) 5′ splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alterna-tive splicing of exon 10. J Biol Chem 274: 15134-15143

    Article  CAS  PubMed  Google Scholar 

  • Grover A, DeTure M, Yen SH, Hutton M (2002) Effects on splicing and protein func-tion of three mutations in codon N296 of tau in vitro. Neurosci Lett 323: 33-36

    Article  CAS  PubMed  Google Scholar 

  • Guillozet-Bongaarts AL, Garcia-Sierra F, Reynolds MR, Horowitz PM, Fu Y, Wang T, Cahill ME, Bigio EH, Berry RW, Binder LI (2005) Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease. Neurobiol Aging 26: 1015-1022

    Article  CAS  PubMed  Google Scholar 

  • Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T, Sato-Yoshitake R, Takel Y, Noda T, Hirokawa N (1994) Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369: 488-491

    Article  CAS  PubMed  Google Scholar 

  • Hartmann AM, Rujescu D, Giannakouros T, Nikolakaki E, Goedert M, Mandelkow E, Gao QS, Andreadis A, Stamm S (2001) Regulation of alternative splicing of human tau exon 10 by phosphorylation of splicing factors. Mol Cell Neurosci 18: 80-90

    Article  CAS  PubMed  Google Scholar 

  • Herbert A (2004) The four Rs of RNA-directed evolution. Nat Genet 36: 19-25

    Article  CAS  PubMed  Google Scholar 

  • Higuchi M, Ishihara T, Zhang B, Hong M, Andreadis A, Trojanowski JQ, Lee VMY (2002) Transgenic mouse model of tauopathies with glial pathology and nervous system degeneration. Neuron 35: 433-446

    Article  CAS  PubMed  Google Scholar 

  • Himmler A (1989) Structure of the bovine tau gene: Alternatively spliced tran-scripts generate a protein family. Mol Cell Biol 9: 1389-1396

    CAS  PubMed  Google Scholar 

  • Himmler A, Drechsel D, Kirschner MW, Martin DW (1989) Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol Cell Biol 9: 1381-1388

    CAS  PubMed  Google Scholar 

  • Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, et al. (1998) Association of mis-sense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393: 702-705

    Article  CAS  PubMed  Google Scholar 

  • Ikegami S, Harada A, Hirokawa N (2000) Muscle weakness, hyperactivity, and impairment in fear conditioning in tau-deficient mice. Neurosci Lett 279: 129-132

    Article  CAS  PubMed  Google Scholar 

  • Ingram EM, Spillantini MG (2002) Tau gene mutations: dissecting the pathogene-sis of FTDP-17. Trends Mol Med 8: 555-562

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Tang H, Havlioglu N, Zhang X, Stamm S, Yan R, Wu JY (2003) Mutations in tau gene exon 10 associated with FTDP-17 alter the activity of an exonic splicing enhancer to interact with Tra2beta1. J Biol Chem 278: 18997-9007

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Mankodi A, Swanson MS, Moxley RT, Thornton, CA (2004) Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet 13: 3079-3088

    Article  CAS  PubMed  Google Scholar 

  • Kempf M, Clement A, Faissner A, Lee G, Brandt R (1996) Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J Neurosci 16: 5583-5592

    CAS  PubMed  Google Scholar 

  • King ME (2005) Can tau filaments be both physiologically beneficial and toxic? Biochim Biophys Acta 1739: 260-267

    CAS  PubMed  Google Scholar 

  • Klamt B, Koziell A, Poulat F, Wieacker P, Scambler P, Berta P, Gessler M (1998) Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/−KTS splice isoforms. Hum Mol Genet 7: 709-714

    Article  CAS  PubMed  Google Scholar 

  • Kosik KS, Orecchio LD, Bakalis S, Neve RL (1989) Developmentally regulated expression of specific tau sequences. Neuron 2: 1389-1397

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Cowan N, Kirschner M (1988) The primary structure and heterogeneity of tau protein from mouse brain. Science 239: 285-288

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Cowan N, Kirschner M (1989) The microtubule binding domain of tau protein. Neuron 2: 1615-1624

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Thangavel R, Sharma V, Litersky J, Bhaskar K, Fang S, Do L, Andreadis A, van Hoesen G, Ksiezak-Reding H (2004) Phosphorylation of tau by fyn: impli-cations for Alzheimer’s disease. J Neurosci 24: 2304-2312

    Article  CAS  PubMed  Google Scholar 

  • Li K, Arikan MC, Andreadis A (2003) Modulation of the membrane-binding domain of tau protein: splicing regulation of exon 2. Mol Brain Res 116: 94-105

    Article  CAS  PubMed  Google Scholar 

  • Liu HX, Zhang M, Krainer AR (1998) Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev 12: 1998-2012

    Article  CAS  PubMed  Google Scholar 

  • Liu CW, Lee G, Jay DG (1999) Tau is required for neurite outgrowth and growth cone motility of chick sensory neurons. Cell Motil Cytoskel 43: 232-242

    Article  CAS  Google Scholar 

  • Lovestone S, Reynolds CH (1997) The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. Neuroscience 78: 309-324

    Article  CAS  PubMed  Google Scholar 

  • Mehta PD, Patrick BA, Dalton AJ, Aisen PS, Emmerling ME, Sersen EA, Wisniewski HM (1999) Increased levels of tau-like protein in patients with Down syndrome. Neurosci Lett 275: 159-162

    Article  CAS  PubMed  Google Scholar 

  • Modoni A, Silvestri G, Pomponi MG, Mangiola F, Tonali PA, Marra C (2004) Characterization of the pattern of cognitive impairment in myotonic dystrophy type 1. Arch Neurol 61: 1943-1947

    Article  PubMed  Google Scholar 

  • Musunuru K (2003) Cell-specific RNA-binding proteins in human disease. Trends Cardiovasc Med 13: 188-195

    Article  CAS  PubMed  Google Scholar 

  • Nasim MT, Chernova TK, Chowdhury HM, Yue BG, Eperon IC (2003) HnRNPG and Tra2beta: opposite effects on splicing matched by antagonism in RNA bind-ing. Hum Mol Genet 12: 1337-1348.

    Article  CAS  PubMed  Google Scholar 

  • Neve RL, Harris R, Kosik KS, Kurnit DM, Donlon TA (1986) Identification of cDNA clones for the human microtubule-associated protein tau and chromoso-mal localization of the genes for tau and microtubule-associated protein 2. Brain Res 387: 271-280

    CAS  PubMed  Google Scholar 

  • Oblinger M, Argasinski A, Wong J, Kosik KS (1991) Tau gene expression in rat sen-sory neurons during development and regeneration. J Neurosci 11: 2453-2459

    CAS  PubMed  Google Scholar 

  • Oyama F, Cairns NJ, Shimada H, Oyama R, Titani K, Ihara Y (1994) Down’s syn-drome: up-regulation of beta-amyloid protein precursor and tau mRNAs and their defective coordination. J Neurochem 62: 1062-1066

    Article  CAS  PubMed  Google Scholar 

  • Ramirez G, Alvarez A, Garcia-Abreu J, Gomes FC, Moura Neto V, Maccioni RB (1999) Regulatory roles of microtubule-associated proteins in neuronal morpho-genesis. Involvement of the extracellular matrix. Braz J Med Biol Res 32: 611-618

    Article  CAS  PubMed  Google Scholar 

  • Ranum LP, Day JW (2004) Pathogenic RNA repeats: an expanding role in genetic disease. Trends Genet 20: 506-512

    Article  CAS  PubMed  Google Scholar 

  • Sergeant N, Sablonniere B, Schraen-Maschke S, Ghestem A, Maurage CA, Wattez A, Vermersch P, Delacourte A (2001) Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Hum Mol Genet 10: 2143-2155

    Article  CAS  PubMed  Google Scholar 

  • Sergeant N, Delacourte A, Buee L (2005) Tau protein as a differential biomarker of tauopathies. Biochim Biophys Acta 1739: 179-197

    CAS  PubMed  Google Scholar 

  • Shahani N, Brandt R (2002) Functions and malfunctions of the tau proteins. Cell Mol Life Sci 59: 1668-1680

    Article  CAS  PubMed  Google Scholar 

  • Sharp PA (1994) Split genes and RNA splicing. Cell 77: 805-815

    Article  CAS  PubMed  Google Scholar 

  • Singleton A, Myers A, Hardy J (2004) The law of mass action applied to neurode-generative disease: a hypothesis concerning the etiology and pathogenesis of complex diseases. Hum Mol Genet 13 Spec No 1: R123-126

    Article  CAS  Google Scholar 

  • Smith CW, Valcárcel J (2000) Alternative pre-mRNA splicing: the logic of combi-natorial control. Trends Biochem Sci 25: 381-388

    Article  CAS  PubMed  Google Scholar 

  • Sobrido MJ, Miller BL, Havlioglu N, Zhukareva V, Jiang Z, Nasreddine ZS, Lee VM, Chow TW, Wilhelmsen KC, Cummings JL, Wu JW, Geschwind DH (2003) Novel tau polymorphisms, tau haplotypes, and splicing in familial and sporadic frontotemporal dementia. Arch Neurol. 60: 698-702

    Article  PubMed  Google Scholar 

  • Solnick D Lee SI (1987) Amount of RNA secondary structure required to induce an alternative splice. Mol Cell Biol 7: 3194-3198

    Google Scholar 

  • Stanford PM, Shepherd CE, Halliday GM, Brooks WS, Schofield PW, Brodaty H, Martins RN, Kwok JB, Schofield PR (2003) Mutations in the tau gene that cause an increase in three repeat tau and frontotemporal dementia. Brain 126: 814-826

    Article  PubMed  Google Scholar 

  • Stoilov P, Meshorer E, Gencheva M, Glick D, Soreq H, Stamm S (2002) Defects in pre-mRNA processing as causes of and predisposition to diseases. DNA Cell Biol 21: 803-818

    Article  CAS  PubMed  Google Scholar 

  • Stoothoff WH, Johnson GV (2005) Tau phosphorylation: physiological and patho-logical consequences. Biochim Biophys Acta 1739: 280-297

    CAS  PubMed  Google Scholar 

  • Thurston VC, Pena P, Pestell R, Binder LI (1997) Nucleolar localization of the microtubule-associated protein tau in neuroblastomas using sense and antisense transfection strategies. Cell Motil Cytoskel 38: 100-110

    Article  CAS  Google Scholar 

  • Wang J, Gao QS, Wang Y, Lafyatis R, Stamm S, Andreadis A (2004) Tau exon 10, whose missplicing causes frontotemporal dementia, is regulated by an intricate interplay of cis elements and trans factors. J Neurochem 88: 1078-1090

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang J, Gao L, Lafyatis R, Stamm S, Andreadis A (2005) Tau exons 2 and 10, which are misregulated in neurodegenerative diseases, are partly regu-lated by silencers which bind an SRp30c / SRp55 complex that either recruits or antagonizes htra2beta1. J Biol Chem 280: 14230-14239

    Article  CAS  PubMed  Google Scholar 

  • Wei ML, Andreadis A (1998) Splicing of a regulated exon reveals additional complexity in the axonal microtubule-associated protein tau. J Neurochem 70: 1346-1356

    CAS  PubMed  Google Scholar 

  • Wilhelmsen KC (1998) Chromosome 17-linked dementias. Cell Mol Life Sci 54: 920-924

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Guo J, Zhou J (2004) A minimal length between tau exon 10 and 11 is required for correct splicing of exon 10. J Neurochem 90: 164-172

    Article  CAS  PubMed  Google Scholar 

  • Zheng ZM (2004) Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. J Biomed Sci 11: 278-294

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Shendure J, Mitra RD, Church GM (2003) Single molecule profiling of alternative pre-mRNA splicing. Science 301: 836-838

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Andreadis, A. (2006). Misregulation of Tau Alternative Splicing in Neurodegeneration and Dementia. In: Jeanteur, P. (eds) Alternative Splicing and Disease. Progress in Molecular and Subcellular Biology, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34449-0_5

Download citation

Publish with us

Policies and ethics