Skip to main content

Ion Channels in Analgesia Research

  • Chapter
Analgesia

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 177))

Abstract

The distribution of ion channels in neurons associated with pain pathways is becoming better understood. In particular, we now have insights into the molecular nature of the channels that are activated by tissue-damaging stimuli, as well as the mechanisms by which voltage-gated channels alter the sensitivity of peripheral neurons to change pain thresholds. This chapter details the evidence that individual channels may be associated with particular pain states, and describes genetic approaches to test the possible utility of targeting individual channels to treat pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdi S, Lee DH, Chung JM (1998) The anti-allodynic effects of amitriptyline, gabapentin, and lidocaine in a rat model of neuropathic pain. Anesth Analg 87:1360–1366

    PubMed  CAS  Google Scholar 

  • Abe M, Kurihara T, Han W, Shinomiya K, Tanabe T (2002) Changes in expression of voltage-dependent ion channel subunits in dorsal root ganglia of rats with radicular injury and pain. Spine 27:1517–1524

    PubMed  Google Scholar 

  • Akopian AN, Sivilotti L, Wood JN (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379:257–262

    PubMed  CAS  Google Scholar 

  • Akopian AN, Souslova V, England S, Okuse K, McMahon S, Boyce S, Dickenson AH, Wood JN (1999) The TTX-R sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2:541–5489

    PubMed  CAS  Google Scholar 

  • Albrieux M, Platel JC, Dupuis A, Villaz M, Moody WJ (2004) Early expression of sodium channel transcripts and sodium current by cajal-retzius cells in the preplate of the embryonic mouse neocortex. J Neurosci 24:1719–1725

    PubMed  CAS  Google Scholar 

  • Altier C, Zamponi GW (2004) Targeting Ca2+ channels to treat pain: T-type versus N-type. Trends Pharmacol Sci 25:465–470

    PubMed  CAS  Google Scholar 

  • Baker MD, Chandra SY, Ding Y, Waxman SG, Wood JN (2003) GTP-induced tetrodotoxinresistant Na+ current regulates excitability in mouse and rat small diameter sensory neurones. J Physiol 548:373–382

    PubMed  CAS  Google Scholar 

  • Baron SP, Hidayetoglu DL, Offord JD, Ti-Zhi S (2005) United States Patent Application 20050144659 Warner-Lambert Company, 2800 Plymouth Rd, Ann Arbor, MI 48105 US

    Google Scholar 

  • Beckh S, Noda M, Lubbert H, Numa S (1989)Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J 8:3611–3616

    PubMed  CAS  Google Scholar 

  • Bell TJ, Thaler C, Castiglioni AJ, Helton TD, Lipscombe D (2004) Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron 41:127–138

    PubMed  CAS  Google Scholar 

  • Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    PubMed  CAS  Google Scholar 

  • Bhattacharjee A, Kaczmarek LK (2005) For K+ channels, Na+ is the new Ca2+. Trends Neurosci 28:422–428

    PubMed  CAS  Google Scholar 

  • Black JA, Cummins TR, Yoshimura N, de Groat WC, Waxman SG (2003) Tetrodotoxin-resistant sodium channels Na(v)1.8/SNS and Na(v)1.9/NaN in afferent neurons innervating urinary bladder in control and spinal cord injured rats. Brain Res 963:132–138

    PubMed  CAS  Google Scholar 

  • Boucher TJ, Okuse K, Bennett DL, Munson JB, Wood JN, McMahon SB (2000) Potent analgesic effects of GDNF in neuropathic pain states. Science 290:124–127

    PubMed  CAS  Google Scholar 

  • Bourinet E, Zamponi GW (2005) Voltage gated calcium channels as targets for analgesics. Curr Top Med Chem 5:539–546

    PubMed  CAS  Google Scholar 

  • Bourinet E, Alloui A, Monteil A, Barrere C, Couette B, Poirot O, Pages A, McRory J, Snutch TP, Eschalier A, Nargeot J (2005) Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 24:315–324

    PubMed  CAS  Google Scholar 

  • Brose WG, Gutlove DP, Luther RR, Bowersox SS, McGuire D (1997) Use of intrathecal SNX-111, a novel, N-type, voltage-sensitive, calcium channel blocker, in the management of intractable brachial plexus avulsion pain. Clin J Pain 13:256–259

    PubMed  CAS  Google Scholar 

  • Buchner DA, Trudeau M, Meisler MH (2003) SCNM1, a putative RNA splicing factor that modifies disease severity in mice. Science 301:967–969

    PubMed  CAS  Google Scholar 

  • Calderone V, Testai L, Martinotti E, Del Tacca M, Breschi MC (2005) Drug-induced block of cardiac HERG potassium channels and development of torsade de pointes arrhythmias: the case of antipsychotics. J Pharm Pharmacol 57:151–161

    PubMed  CAS  Google Scholar 

  • Chahine M, Ziane R, Vijayaragavan K, Okamura Y (2005) Regulation of Na v channels in sensory neurons. Trends Pharmacol Sci 26:496–502

    PubMed  CAS  Google Scholar 

  • Chaplan SR, Guo HQ, Lee DH, Luo L, Liu C, Kuei C, Velumian AA, Butler MP, Brown SM, Dubin AE (2003) Neuronal hyperpolarization-activated pacemaker channels drive neuropathic pain. J Neurosci 23:1169–1178

    PubMed  CAS  Google Scholar 

  • Chen CC, Zimmer A, Sun WH, Hall J, Brownstein MJ, Zimmer A (2002) A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc Natl Acad Sci U S A 99:8992–8997

    PubMed  CAS  Google Scholar 

  • Costigan M, Befort K, Karchewski L, Griffin RS, D’Urso D, Allchorne A, Sitarski J, Mannion JW, Pratt RE, Woolf CJ (2002) Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci 3:16

    PubMed  Google Scholar 

  • Cummins TR, Waxman SG (1997) Down-regulation of tetrodotoxin-resistant sodium currents and up-regulation of a rapidly repriming tetrodotoxin-sensitive sodiumcurrent in small spinal sensory neurons following nerve injury. J Neurosci 17:3503–3514

    PubMed  CAS  Google Scholar 

  • Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN, Waxman SG (1999) Anovel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci 19:RC43

    PubMed  CAS  Google Scholar 

  • Cummins TR, Black JA, Dib-Hajj SD, Waxman SG (2000) GDNF up-regulates expression of functional SNS and NaN sodium channels and their currents in axotomized DRG neurons. J Neurosci 20:8754–8761

    PubMed  CAS  Google Scholar 

  • Cummins TR, Aglieco F, Renganathan M, Herzog RI, Dib-Hajj SD, Waxman SG (2001) Nav1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences following expression in a mammalian cell line and in spinal sensory neurons. J Neurosci 21:5952–5961

    PubMed  CAS  Google Scholar 

  • Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158

    PubMed  CAS  Google Scholar 

  • Dib-Hajj S, Black JA, Felts P, Waxman SG (1996) Down-regulation of transcripts for Na channel SNS in spinal sensory neurons following axotomy. Proc Natl Acad Sci U S A 93:14950–14954

    PubMed  CAS  Google Scholar 

  • Dib-Hajj S, Black JA, Cummins TR, Waxman SG (2002) NaN/Nav1.9: a sodium channel with unique properties. Trends Neurosci 25:253–259

    PubMed  CAS  Google Scholar 

  • Dib-Hajj SD, Tyrrell L, Black JA, Waxman SG (1998) NaN, a novel voltage-gated Na channel preferentially expressed in peripheral sensory neurons and down-regulated following axotomy. Proc Natl Acad Sci U S A 95:8963–8968

    PubMed  CAS  Google Scholar 

  • Dib-Hajj SD, Rush AM, Cummins TR, Hisama FM, Novella S, Tyrrell L, Marshall L, Waxman SG (2005) Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain 128:1847–1854

    PubMed  CAS  Google Scholar 

  • Djouhri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson S (2003) The TTX-resistant sodium channel Nav1.8: expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol 550:739–752

    PubMed  CAS  Google Scholar 

  • Drenth JP, te Morsche RH, Guillet G, Taieb A, Kirby RL, Jansen JB (2005) SCN9A mutations define primary erythermalgia as a neuropathic disorder of voltage gated sodium channels. J Invest Dermatol 124:1333–1338

    PubMed  CAS  Google Scholar 

  • Erichsen HK, Blackburn-Munro G (2002) Pharmacological characterisation of the spared nerve injury model of neuropathic pain. Pain 98:151–161

    PubMed  CAS  Google Scholar 

  • Ettaiche M, Guy N, Hofman P, Lazdunski M, Waldmann R (2004) Acid-sensing ion channel 2 is important for retinal function and protects against light-induced retinal degeneration. J Neurosci 24:1005–1012

    PubMed  CAS  Google Scholar 

  • Fang X, Djouhri L, Black JA, Dib-Hajj SD, Waxman SG, Lawson SN (2002) The presence and role of the TTX resistant sodium channel Nav1.9 (NaN) in nociceptive primary afferent neurons. J Neurosci 22:7425–7433

    PubMed  CAS  Google Scholar 

  • Felix R, Gurnett CA, De Waard M, Campbell KP (1997) Dissection of functional domains of the voltage-dependent Ca2+ channel alpha2delta subunit. J Neurosci 17:6884–6891

    PubMed  CAS  Google Scholar 

  • Felts PA, Yokoyama S, Dib-Hajj S, Black JA, Waxman SG (1997) Sodium channel alpha-subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system. Brain Res Mol Brain Res 45:71–82

    PubMed  CAS  Google Scholar 

  • Fozzard HA, Lee PJ, Lipkind GM (2005) Mechanism of local anesthetic drug action on voltage-gated sodium channels. Curr Pharm Des 11:2671–2686

    PubMed  CAS  Google Scholar 

  • Fukuoka T, Tokunaga A, Tachibana T, Dai Y, Yamanaka H, Noguchi K (2002) VR1, but not P2X(3), increases in the spared L4 DRG in rats with L5 spinal nerve ligation. Pain 99:111–120

    PubMed  CAS  Google Scholar 

  • Gee NS, Brown JP, Dissanayake VU, Offord J, Thurlow R, Woodruff GN (1996) The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J Biol Chem 271:5768–5776

    PubMed  CAS  Google Scholar 

  • Goldin AL (2001) Resurgence of sodium channel research. Annu Rev Physiol 63:871–894

    PubMed  CAS  Google Scholar 

  • Gong HC, Hang J, Kohler W, Li L, Su TZ (2001) Tissue-specific expression and gabapentin-binding properties of calcium channel alpha2delta subunit subtypes. J Membr Biol 184:35–43

    PubMed  CAS  Google Scholar 

  • Hains BC, Klein JP, Saab CY, Craner MJ, Black JA, Waxman SG(2003)Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J Neurosci 23:8881–8892

    PubMed  CAS  Google Scholar 

  • Hanrahan CJ, Palladino MJ, Ganetzky B, Reenan RA (2000) RNA editing of the Drosophila paraNa(+) channel transcript. Evolutionary conservation and developmental regulation. Genetics 155:1149–1160

    PubMed  CAS  Google Scholar 

  • Hiyama TY, Watanabe E, Ono K, Inenaga K, Tamkun MM, Yoshida S, Noda M (2002) Na(x) channel involved in CNS sodium-level sensing. Nat Neurosci 5:511–512

    PubMed  CAS  Google Scholar 

  • Hong S, Morrow TJ, Paulson PE, Isom LL, Wiley JW (2004) Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin-sensitive and-resistant sodium channels in dorsal root ganglion neurons in the rat. J Biol Chem 279:29341–29350

    PubMed  CAS  Google Scholar 

  • Hudson LJ, Bevan S, Wotherspoon G, Gentry C, Fox A, Winter J (2001) VR1 protein expression increases in undamaged DRG neurons after partial nerve injury. Eur J Neurosci 13:2105–2114

    PubMed  CAS  Google Scholar 

  • Immke DC, McCleskey EW (2003) Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade. Neuron 37:75–84

    PubMed  CAS  Google Scholar 

  • Ishikawa K, Tanaka M, Black JA, Waxman SG (1999) Changes in expression of voltage-gated potassium channels in dorsal root ganglion neurons following axotomy. Muscle Nerve 22:502–507

    PubMed  CAS  Google Scholar 

  • Kerr BJ, Souslova V, McMahon SB, Wood JN (2001) A role for the TTX-resistant sodium channel Nav 1.8 in NGF-induced hyperalgesia, but not neuropathic pain. Neuroreport 12:3077–3080

    PubMed  CAS  Google Scholar 

  • Kerr NC, Holmes FE, Wynick D (2004) Novel isoforms of the sodium channels Nav1.8 and Nav1.5 are produced by a conserved mechanism in mouse and rat. J Biol Chem 279:24826–24833

    PubMed  CAS  Google Scholar 

  • Khasar SG, Gold MS, Levine JD (1998) A tetrodotoxin-resistant sodium current mediates inflammatory pain in the rat. Neurosci Lett 256:17–20

    PubMed  CAS  Google Scholar 

  • Kim CH, Oh Y, Chung JM, Chung K (2001) The changes in expression of three subtypes of TTX sensitive sodium channels in sensory neurons after spinal nerve ligation. Brain Res Mol Brain Res 95:153–161

    PubMed  CAS  Google Scholar 

  • Kim D (2005) Physiology and pharmacology of two-pore domain potassium channels. Curr Pharm Des 11:2717–2736

    PubMed  CAS  Google Scholar 

  • Kim DS, Choi JO, Rim HD, Cho HJ (2002) Downregulation of voltage-gated potassium channel alpha gene expression in dorsal root ganglia following chronic constriction injury of the rat sciatic nerve. Brain Res Mol Brain Res 105:146–152

    PubMed  CAS  Google Scholar 

  • Kim KJ, Yoon YW, Chung JM (1997) Comparison of three rodent neuropathic pain models. Exp Brain Res 113:200

    PubMed  CAS  Google Scholar 

  • Kraner SD, Chong JA, Tsay HJ, Mandel G (1992) Silencing the type II sodium channel gene: a model for neural-specific gene regulation. Neuron 9:37–44

    PubMed  CAS  Google Scholar 

  • Krishtal O (2003) The ASICs: signaling molecules? Modulators? Trends Neurosci 26:477–483

    PubMed  CAS  Google Scholar 

  • Kuwabara T, Hsieh J, Nakashima K, Taira K, Gage FH (2004) A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116:779–793

    PubMed  CAS  Google Scholar 

  • Lai J, Gold MS, Kim CS, Bian D, Ossipov MH, Hunter JC, Porreca F (2002) Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, Nav1.8. Pain 95:143–152

    PubMed  CAS  Google Scholar 

  • Lalo UV, Pankratov YV, Arndts D, Krishtal OA (2001) Omega-conotoxin GVIA potently inhibits the currents mediated by P2X receptors in rat DRG neurons. Brain Res Bull 54:507–512

    PubMed  CAS  Google Scholar 

  • Le Y, Sauer B (2001) Conditional gene knockout using Cre recombinase. Mol Biotechnol 17:269–275

    PubMed  CAS  Google Scholar 

  • Leffler A, Cummins TR, Dib-Hajj SD, Hormuzdiar WN, Black JA, Waxman SG (2002) GDNF and NGF reverse changes in repriming of TTX-sensitive Na(+) currents following axotomy of dorsal root ganglion neurons. J Neurophysiol 88:650–658

    PubMed  CAS  Google Scholar 

  • Lewin GR, Moshourab R (2004) Mechanosensation and pain. J Neurobiol 61:30–44

    PubMed  Google Scholar 

  • Liu Z, Song W, Dong K (2004) Persistent tetrodotoxin-sensitive sodium current resulting from U-to-C RNA editing of an insect sodium channel. Proc Natl Acad Sci U S A 101:11862–11867

    PubMed  CAS  Google Scholar 

  • Luo ZD, Calcutt NA, Higuera ES, Valder CR, Song YH, Svensson CI, Myers RR (2002) Injury type-specific calcium channel alpha 2 delta-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J Pharmacol Exp Ther 303:1199–1205

    PubMed  CAS  Google Scholar 

  • Malhotra JD, Kazen-Gillespie K, Hortsch M, Isom LL (2000) Sodium channel beta subunits mediate homophilic cell adhesion and recruit ankyrin to points of cell-cell contact. J Biol Chem 275:11383–11388

    PubMed  CAS  Google Scholar 

  • Malik-Hall M, Wood JN, Okuse K (2003) Voltage-gated sodium channels. In: Moss SJ, Henley J (eds) Receptor and ion channel trafficking. Oxford University Press, Oxford, pp 3–28

    Google Scholar 

  • Mogil JS, Wilson SG, Bon K, Lee SE, Chung K, Raber P, Pieper JO, Hain HS, Belknap JK, Hubert L, Elmer GI, Chung JM, Devor M (1999) Heritability of nociception I: responses of 11 inbred mouse strains on 12 measures of nociception. Pain 80:67–82

    PubMed  CAS  Google Scholar 

  • Montell C (2005) The TRP superfamily of cation channels. Sci STKE 272:re3

    Google Scholar 

  • Nassar MA, Levato A, Stirling LC, Wood JN (2005) Neuropathic pain develops normally in mice lacking both Nav1.7 and Nav1.8. Mol Pain 1:24

    PubMed  Google Scholar 

  • Nicholson B (2000) Gabapentin use in neuropathic pain syndromes. Acta Neurol Scand 101:359–371

    PubMed  CAS  Google Scholar 

  • Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE (2005) Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J Biol Chem 280:22540–22548

    PubMed  CAS  Google Scholar 

  • Okuse K, Malik-Hall M, Baker MD, Poon WYL, Kong H, Chao MV, Wood JN (2002) Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature 47:653–656

    Google Scholar 

  • Page AJ, Brierley SM, Martin CM, Martinez-Salgado C, Wemmie JA, Brennan TJ, Symonds E, Omari T, Lewin GR, Welsh MJ, Blackshaw LA (2004) The ion channel ASIC1 contributes to visceral but not cutaneous mechanoreceptor function. Gastroenterology 127:1739–1747

    PubMed  CAS  Google Scholar 

  • Passmore GM, Selyanko AA, Mistry M, Al-Qatari M, Marsh SJ, Matthews EA, Dickenson AH, Brown TA, Burbidge SA, Main M, Brown DA (2003) KCNQ/M currents in sensory neurons: significance for pain therapy. J Neurosci 23:7227–7236

    PubMed  CAS  Google Scholar 

  • Paukert M, Sidi S, Russell C, Siba M, Wilson SW, Nicolson T, Grunder S (2004) A family of acid-sensing ion channels from the zebrafish: widespread expression in the central nervous system suggests a conserved role in neuronal communication. J Biol Chem 279:18783–18791

    PubMed  CAS  Google Scholar 

  • Peng BG, Ahmad S, Chen S, Chen P, Price MP, Lin X (2004) Acid-sensing ion channel 2 contributes a major component to acid-evoked excitatory responses in spiral ganglion neurons and plays a role in noise susceptibility of mice. J Neurosci 24:10167–10175

    PubMed  CAS  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161

    PubMed  CAS  Google Scholar 

  • Price MP, McIlwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071–1083

    PubMed  CAS  Google Scholar 

  • Rasband MN, Park EW, Vanderah TW, Lai J, Porreca F, Trimmer JS (2001) Distinct potassium channels on pain-sensing neurons. Proc Natl Acad Sci U S A 98:13373–13378

    PubMed  CAS  Google Scholar 

  • Rashid MH, Inoue M, Kondo S, Kawashima T, Bakoshi S, Ueda H (2003) Novel expression of vanilloid receptor 1 on capsaicin-insensitive fibers accounts for the analgesic effect of capsaicin cream in neuropathic pain. J Pharmacol Exp Ther 304:940–948

    PubMed  CAS  Google Scholar 

  • Reenan RA, Hanrahan CJ, Barry G (2000) The mle(napts) RNA helicase mutation in Drosophila results in a splicing catastrophe of the para Na+ channel transcript in a region of RNA editing. Neuron 25:139–149

    PubMed  CAS  Google Scholar 

  • Renganathan M, Cummins TR, Waxman SG (2001) Contribution of Nav1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 86:629–640

    PubMed  CAS  Google Scholar 

  • Rowbotham MC, Twilling L, Davies P, Taylor K, Mohr D, Reisner L (2003) Oral opioid therapy for chronic peripheral and central neuropathic pain. N Engl J Med 348:1223–1232

    PubMed  CAS  Google Scholar 

  • Roza C, Laird JM, Souslova V, Wood JN, Cervero F (2003) The tetrodotoxin-resistant Na+ channel Nav1.8 is essential for the expression of spontaneous activity in damaged sensory axons of mice. J Physiol 550:921–926

    PubMed  CAS  Google Scholar 

  • Saegusa H, Kurihara T, Zong S, Kazuno A, Matsuda Y, Nonaka T, Han W, Toriyama H, Tanabe T (2001) Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J 20:2349–2356

    PubMed  CAS  Google Scholar 

  • Saegusa H, Matsuda Y, Tanabe T (2002) Effects of ablation of N-and R-type Ca(2+) channels on pain transmission. Neurosci Res 43:1–7

    PubMed  CAS  Google Scholar 

  • Sanguinetti MC, Chen J, Fernandez D, Kamiya K, Mitcheson J, Sanchez-Chapula JA (2005) Physicochemical basis for binding and voltage-dependent block of hERG channels by structurally diverse drugs. Novartis Found Symp 266:159–166

    PubMed  CAS  Google Scholar 

  • Schafers M, Sorkin LS, Geis C, Shubayev VI (2003) Spinal nerve ligation induces transient upregulation of tumor necrosis factor receptors 1 and 2 in injured and adjacent uninjured dorsal root ganglia in the rat. Neurosci Lett 347:179–182

    PubMed  CAS  Google Scholar 

  • Schoenherr CJ, Anderson DJ (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267:1360–1363

    PubMed  CAS  Google Scholar 

  • Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43:205–218

    PubMed  CAS  Google Scholar 

  • Shah BS, Gonzalez MI, Bramwell S, Pinnock RD, Lee K, Dixon AK (2001) Beta3, a novel auxiliary subunit for the voltage gated sodium channel is upregulated in sensory neurones following streptozocin induced diabetic neuropathy in rat. Neurosci Lett 309:1–4

    PubMed  CAS  Google Scholar 

  • Sindrup SH, Jensen TS (1999) Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action. Pain 83:389–400

    PubMed  CAS  Google Scholar 

  • Sleeper AA, Cummins TR, Dib-Hajj SD, Hormuzdiar W, Tyrrell L, Waxman SG, Black JA (2000) Changes in expression of two tetrodotoxin-resistant sodium channels and their currents in dorsal root ganglion neurons after sciatic nerve injury but not rhizotomy. J Neurosci 20:7279–7289

    PubMed  CAS  Google Scholar 

  • Strichartz GR, Zhou Z, Sinnott C, Khodorova A (2002) Therapeutic concentrations of local anaesthetics unveil the potential role of sodium channels in neuropathic pain. Novartis Found Symp 241:189–201

    PubMed  CAS  Google Scholar 

  • Suzuki M, Mizuno A, Kodaira K, Imai M (2003) Impaired pressure sensation inmice lacking TRPV4. J Biol Chem 278:22664–22668

    PubMed  CAS  Google Scholar 

  • Tan J, Liu Z, Nomura Y, Goldin AL, Dong K (2002) Alternative splicing of an insect sodium channel gene generates pharmacologically distinct sodium channels. JNeurosci 22:5300–5309

    CAS  Google Scholar 

  • Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S (2002) Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest 110:1185–1190

    PubMed  CAS  Google Scholar 

  • Voilley N, de Weille J, Mamet J, Lazdunski M (2001) Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 21:8026–8033

    PubMed  CAS  Google Scholar 

  • Waldmann R, Lazdunski M (1998) H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8:418–424

    PubMed  CAS  Google Scholar 

  • Wang H, Sun H, Della PK, Benz R, Xu J, Gerhold D, Holder D, Koblan K (2002) Chronic neuropathic pain is accompanied by global changes in gene expression and shares pathobiology with neurodegenerative diseases. Neuroscience 114:529–546

    PubMed  CAS  Google Scholar 

  • Wang YX, Pettus M, Gao D, Phillips C, Scott Bowersox S (2000) Effects of intrathecal administration of ziconotide, a selective neuronal N-type calcium channel blocker, on mechanical allodynia and heat hyperalgesia in a rat model of postoperative pain. Pain 84:151–158

    PubMed  CAS  Google Scholar 

  • Waxman SG, Kocsis JK, Black JA (1994) Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is re-expressed following axotomy. J Neurophysiol 72:466–471

    PubMed  CAS  Google Scholar 

  • Waxman SG, Cummins TR, Dib-Hajj S, Fjell J, Black JA (1999) Sodium channels, excitability of primary sensory neurons, and the molecular basis of pain. Muscle Nerve 22:1177–1187

    PubMed  CAS  Google Scholar 

  • Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH Jr, Welsh MJ (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34:463–477

    PubMed  CAS  Google Scholar 

  • Wemmie JA, Askwith CC, Lamani E, Cassell MD, Freeman JH Jr, Welsh MJ (2003) Acidsensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci 23:5496–5502

    PubMed  CAS  Google Scholar 

  • Wemmie JA, Coryell MW, Askwith CC, Lamani E, Leonard AS, Sigmund CD, Welsh MJ (2004) Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. Proc Natl Acad Sci U S A 101:3621–3626

    PubMed  CAS  Google Scholar 

  • Xiao HS, Huang QH, Zhang FX, Bao L, Lu YJ, Guo C, Yang L, Huang WJ, Fu G, Xu SH, Cheng XP, Yan Q, Zhu ZD, Zhang X, Chen Z, Han ZG, Zhang X (2002) Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci U S A 99:8360–8365

    PubMed  CAS  Google Scholar 

  • Xie J, Jan C, Stoilov P, Park J, Black DL (2005) A consensus CaMK IV-responsive RNA sequence mediates regulation of alternative exons in neurons. RNA 11:1825–1834

    PubMed  CAS  Google Scholar 

  • Xiong ZG, Chu XP, Simon RP(2006)Ca2+-permeable acid-sensing ionchannels and ischemic brain injury. J Membr Biol 209:59–68

    PubMed  CAS  Google Scholar 

  • Yermolaieva O, Leonard AS, Schnizler MK, Abboud FM, Welsh MJ (2004) Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci U S A 101:6752–6757

    PubMed  CAS  Google Scholar 

  • Yoon YW, Lee DH, Lee BH, Chung K, Chung JM (1999) Different strains and substrains of rats show different levels of neuropathic pain behaviors. Exp Brain Res 129:167–171

    PubMed  CAS  Google Scholar 

  • Yu FH, Catterall WA (2004) The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE 253:re15

    Google Scholar 

  • Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA (2005) Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev 57:387–395

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wood, J.N. (2006). Ion Channels in Analgesia Research. In: Stein, C. (eds) Analgesia. Handbook of Experimental Pharmacology, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33823-9_12

Download citation

Publish with us

Policies and ethics