Skip to main content

7 Taphonomic and Diagenetic Processes

  • Reference work entry
  • First Online:
Handbook of Paleoanthropology

Abstract

The recycling of matter within an ecosystem is a fundamental process and therefore, fossilization of a body or its parts is always the exception to the rule. The transition of organic remains from the biosphere to the lithosphere (= taphonomy) comprises the successive steps of necrology, biostratinomy, burial, and diagenesis. Focusing on the taphonomy of vertebrate skeletons, fossil types, and the main processes leading to preservation and/or destruction of a dead body and how these are intertwined, are introduced. All in all, fossilization is not a random process. Almost all of the first-order changes a dead body is subject to prior to fossilization may lead to alterations in size and shape of a skeletal part, which might be mistaken for artificial manipulations (pseudoartifacts). Taphonomic processes without doubt lead to a stepwise loss of information about the formerly living being. Today, methodological progress especially in the field of archeometry permits the evaluation of a variety of lifetime parameters. However, deep insights into taphonomic, especially diagenetic, processes are the indispensable prerequisites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allison P, Briggs DEG (eds) (1991) Taphonomy. Releasing the data locked in the fossil record. Plenum Press, New York

    Google Scholar 

  • Balzer et al. (1997) In vitro decomposition of bone collagen by soil bacteria: the implications for stable isotope analysis in archaeometry. Archaeometry 39: 415–429

    Article  CAS  Google Scholar 

  • Behrensmeyer AK (1978) Taphonomic and ecological information from bone weathering. Paleobiology 4: 150–162

    Google Scholar 

  • Behrensmeyer AK, Hill AP (1980) Fossils in the making: vertebrate taphonomy and palaeoecology. University of Chicago Press, Chicago

    Google Scholar 

  • Behrensmeyer AK, Gordon KD, Yanagi GT (1986) Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature 319: 768–771

    Article  Google Scholar 

  • Binford LR (1981) Bones: ancient man and modern myths. Academic Press, New York

    Google Scholar 

  • Blumenschine RJ (1986) Carcass consumption sequences and the archaeological distinction of scavenging and hunting. J Hum Evol 15: 639–659

    Article  Google Scholar 

  • Boaz NT, Behrensmeyer AK (1976) Hominid taphonomy: transport of human skeletal parts in an artificial fluviate environment. Am J Phys Anthropol 45: 53–60

    Article  CAS  PubMed  Google Scholar 

  • Brain CK (1967) Hottentot food remains and their bearing on the interpretation of fossil bone assemblages. Sci Pap Namib Desert Res Station 32: 1–7

    Google Scholar 

  • Brain CK (1981) The hunters or the hunted? An introduction to African cave taphonomy. University of Chicago Press, Chicago London

    Google Scholar 

  • Bromage TG, Boyde A (1984) Microscopic criteria for the determination of directionality of cutmarks on bone. Am J Phys Anthropol 65: 359–366

    Article  CAS  PubMed  Google Scholar 

  • Chin K, Eberth DA, Schweitzer MH, Rando TA, Sloboda WJ, Horner JR (2003) Remarkable preservation of undigested muscle tissue within a Late Cretaceous Tyrannosaurid coprolite from Alberta, Canada. Palaios 18: 286–294

    Article  PubMed  Google Scholar 

  • Collins MJ, Nielsen-Marsh CM, Hiller J, Smith CI, Roberts JP, Prigodich RV, Weiss TJ, Csapò J, Millard AR, Turner-Walker G (2002) The survival of organic matter in bone: a review. Archaeometry 44: 383–394

    Article  CAS  Google Scholar 

  • Dart RA (1957) The osteodontokeratic culture of Australopithecus prometheus. Transvaal Museum Memoir 10: 1–105

    Google Scholar 

  • Denys C (2002) Taphonomy and experimentation. Archaeometry 44: 469–484

    Article  Google Scholar 

  • Dominguez-Rodrigo M, Pickering TR, Martinez LA (2003) Introduction to a new Journal for Taphonomic Research. J Taphonomy 1: 1–2

    Google Scholar 

  • Donovan SK (1991) The processes of fossilization. Columbia University Press, New York

    Google Scholar 

  • Efremov IA (1940) Taphonomy: a new branch of paleontology. Pan-American Geologist 74: 81–93

    Google Scholar 

  • Eickhoff S, Herrmann B (1985) Surface marks on bones from a Neolithic collective grave (Odagsen, Lower Saxony). A study on differential diagnosis. J Hum Evol 14: 63–274

    Google Scholar 

  • Gautier A (1993) Trace fossils in archaeozoology. J Archaeol Sci 20: 11–523

    Article  Google Scholar 

  • Gill-King H (1997) Chemical and ultrastructural aspects of decomposition. In: Haglund DW, Sorg MH (eds) Forensic taphonomy. The post-mortem fate of human remains. CRC Press, Boca Raton, pp 93–108

    Google Scholar 

  • Götherström A, Collins MJ, Angerbjörn A, Lidén K (2002) Bone preservation and DNA amplification. Archaeometry 44: 95–404

    Google Scholar 

  • Grupe G (2001) Archaeological microbiology. In: Brothwell DR, Pollard AM (eds) Handbook of archaeological sciences. John Wiley & Sons, Chichester, pp 351–358

    Google Scholar 

  • Haglund DW (1997) Dogs and coyotes: postmortem involvement with human remains. In: Haglund DW, Sorg MH (eds) Forensic taphonomy. The post-mortem fate of human remains. CRC Press, Boca Raton, pp 367–381

    Google Scholar 

  • Haglund DW, Sorg MH (2002) Human remains in water environments. In: Haglund WD, Sorg MHG (eds) Advances in forensic taphonomy. Method, theory, and archaeological perspectives. CRC Press, Boca Raton, pp 201–218

    Google Scholar 

  • Haynes G (1980) Prey bones and predators: potential ecologic information from analysis of bone sites. Ossa 7: 75–97

    Google Scholar 

  • Henderson J (1987) Factors determining the state of preservation of human remains. In: Boddington A, Garland AN, Janaway RC (eds) Death, decay and reconstruction. Approaches to archaeology and forensic science. Manchester University Press, Manchester, pp 43–54

    Google Scholar 

  • Herrmann B, Newesely H (1982) Dekompositionsvorgänge des Knochens unter langer Liegezeit. 1. Die mineralische Phase. Anthropol Anz 40: 19–31

    CAS  PubMed  Google Scholar 

  • Hollocher TC, Chin K, Hollocher KT, Kruge MA (2001) Bacterial residues in coprolites of herbivorous dinosaurs: role of bacteria in mineralization of feces. Palaios 16: 547–565

    Article  Google Scholar 

  • Lyman RL (1984) Bone density and differential survivorship of fossil classes. J Anthropol Archaeol 3: 259–299

    Article  Google Scholar 

  • Lyman RL (1994) Vertebrate taphonomy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lyman RL, Fox GL (1997) A critical evaluation of bone weathering as an indication of bone assemblage formation. In: Haglund WD, Sorg MC (eds) Forensic taphonomy. The post-mortem fate of human remains. CRC Press, Boca Raton, pp 223–247

    Google Scholar 

  • Martin RE (1999) Taphonomy: a process approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Metzger CA, Terry DO, Grandstaff DE (2004) Effect of paleosol formation on rare earth element signatures in fossil bones. Geology 32: 497–500

    Article  CAS  Google Scholar 

  • Miller GJ (1975) A study of cuts, grooves, and other marks on recent and fossil bone: II. Weathering cracks, fractures, splinters, and other similar natural phenomena. In: Swanson EH (ed) Lithic technology. Making and using stone tools. Mouton, The Hague, pp 211–226

    Google Scholar 

  • Nicholson RA (2001) Taphonomic investigations. In: Brothwell DR, Pollard AM (eds) Handbook of archaeological sciences. John Wiley & Sons, Chichester, pp 179–190

    Google Scholar 

  • Nielsen-Marsh CM, Hedges REM (2000) Patterns of diagenesis in bone I: the effects of site environments. J Archaeol Sci 27: 1139–1150

    Article  Google Scholar 

  • Noe-Nygaard N (1989) Man-made trace fossils in bone. Hum Evol 4: 461–491

    Article  Google Scholar 

  • Person A, Bocherens H, Saliege JF, Paris F, Zeitoun V, Gerard M (1995) Early diagenetic evolution of bone phosphate: an X-ray diffractiometry analysis. J Archaeol Sci 22: 211–221

    Article  Google Scholar 

  • Pickering TR, Clarke RJ, Moggi-Cecchi J (2004) Role of carnivores in the accumulation of the Sterkfontein Member 4 hominid assemblage: a taphonomic reassessment of the complete hominid fossil sample (1936–1999). Am J Phys Anthropol 125: 1–15

    Article  PubMed  Google Scholar 

  • Potts R (1986) Temporal span of bone accumulations at Olduvai Gorge and implications for early hominid foraging behaviour. Paleobiology 12: 25–31

    Google Scholar 

  • Reitz EJ, Wing ES (1999) Zooarchaeology. Cambridge Manuals in Archaeology, Cambridge University Press, Cambridge

    Google Scholar 

  • Roberts SJ, Smith CI, Millard A, Collins MJ (2002) The taphonomy of cooked bone: characterizing boiling and its physico-chemical effects. Archaeometry 44: 485–494

    Article  CAS  Google Scholar 

  • Shipman P (1981a) Life history of a fossil: an introduction to taphonomy and paleoecology. Harvard University Press, Cambridge/Mass

    Google Scholar 

  • Shipman P (1981b) Application of scanning electron microscopy to taphonomic problems. In: Cantwell A-M, Griffin J, Rothschild N (eds) The research potential of anthropological museum collections. Ann N Y Acad Sci 376: 357–385

    Google Scholar 

  • Shipman P (1986) Scavenging or hunting in early hominids: theoretical framework and tests. Am Anthropol 88: 27–43

    Article  Google Scholar 

  • Stojanowski CM, Seidemann RM, Doran GH (2002) Differential skeletal preservation at Windover Pond: causes and consequences. Am Phys Anthropol 119: 15–26

    Article  Google Scholar 

  • Sutcliffe AJ (1970) Spotted hyena: crusher, gnawer, digester and collector of bones. Nature 277: 1110–1113

    Article  Google Scholar 

  • Sutcliffe AJ (1973) Similarity of bones and antlers gnawed by deer to human artefacts. Nature 246: 428–430

    Article  CAS  PubMed  Google Scholar 

  • Toots H (1965) Sequence of disarticulation in mammalian skeletons. Contrib Geol 4: 37–39

    Google Scholar 

  • Trevor-Deutsch B, Bryant VM Jr (1978) Analysis of suspected human coprolites from Terra Amata, Nice, and France. J Archaeol Sci 15: 387–390

    Google Scholar 

  • Walker PL, Long JC (1977) An experimental study of the morphological characteristics of tool marks. Am Antiquity 42: 605–616

    Article  Google Scholar 

  • Weigelt J (1927) Rezente Wirbeltierleichen und ihre paläobiologische Bedeutung. Max Weg, Leipzig

    Google Scholar 

  • Weiner S, Goldberg P, Bar-Yosef O (1993) Bone preservation in Kebara Cave, Israel, using on-site Fourier transform infrared spectrometry. J Archaeol Sci 20: 613–627

    Article  Google Scholar 

  • White EM, Hannus LA (1983) Chemical weathering of bone in archaeological soils. Am Antiquity 48: 316–322

    Article  Google Scholar 

Download references

Acknowledgments

My special thanks are to the editors of this handbook for inviting me to contribute to this volume. Susanne Bischler, MA and Sara Dummler, Dipl Biol kindly provided some of the figures, and George McGlynn, MA edited this manuscript.

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg New York

About this entry

Cite this entry

Grupe, G. (2007). 7 Taphonomic and Diagenetic Processes. In: Handbook of Paleoanthropology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33761-4_7

Download citation

Publish with us

Policies and ethics