Skip to main content

1 Primate Origins and Supraordinal Relationships: Morphological Evidence

  • Reference work entry
  • First Online:
Handbook of Paleoanthropology

Abstract

There are five major scenarios that have been advanced to account for the early events in the origination of the order Primates: a transition from terrestriality to arboreality, the adoption of a grasp-leaping mode of locomotion, the evolution of features for visual predation, an adaptation to terminal branch feeding occurring during angiosperm diversification, or a combination involving terminal branch feeding followed by visual predation. These hypotheses are assessed using both neontological and fossil data. Of the five scenarios, the angiosperm diversification hypothesis is not contradicted by modern data and is found to be the most consistent with the fossil record. In particular, the evolution of features for manual grasping and dental processing of fruit in the earliest primates (primitive plesiadapiforms), and the subsequent development of features for better grasping and more intense frugivory in the common ancestor of Euprimates and Plesiadapoidea, is consistent with a close relationship between early primate and angiosperm evolution. All the other scenarios are less consistent with the pattern of trait acquisition through time observed in the fossil record. Consideration of non-euprimates (e.g., scandentians and plesiadapiforms) is found to be essential to viewing primate origins as an evolutionary process rather than as an event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins RM, Honeycutt RL (1991) Molecular phylogeny of the superorder Archonta. Proc Natl Acad Sci USA 88: 10317–10321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allman J (1977) Evolution of the visual system in the early primates. Prog Psychobiol Physiol Psychol 7: 1–53

    Google Scholar 

  • Anemone RL, Covert HH (2000) New skeletal remains of Omomys (Primates, Omomyidae): functional morphology of the hindlimb and locomotor behavior of a middle Eocene primate. J Hum Evol 38: 300–328

    Article  Google Scholar 

  • Beard KC (1989). Postcranial anatomy, locomotor adaptations, and paleoecology of Early Cenozoic Plesiadapidae, Paromomyidae, and Micromomyidae (Eutheria, Dermoptera). Ph.D. dissertation, Johns Hopkins University School of Medicine, Baltimore Maryland

    Google Scholar 

  • Beard KC (1990) Gliding behavior and palaeoecology of the alleged primate family Paromomyidae (Mammalia, Dermoptera). Nature 345: 340–341

    Article  Google Scholar 

  • Beard KC (1993a) Phylogenetic systematics of the Primatomorpha, with special reference to Dermoptera. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny: placentals. Springer-Verlag, New York, pp 129–150

    Chapter  Google Scholar 

  • Beard KC (1993b) Origin and evolution of gliding in Early Cenozoic Dermoptera (Mammalia, Primatomorpha). In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum Press, New York, pp 63–90

    Chapter  Google Scholar 

  • Beard KC (1998) East of Eden: Asia as an important center of taxonomic origination in mammalian evolution. In: Beard KC, Dawson MR (eds) Dawn of the age of mammals in Asia. Bull Carnegie Mus Nat Hist 34: 5–39

    Google Scholar 

  • Beard KC, Wang J (1995) The first Asian plesiadapoids (Mammalia: Primatomorpha). Ann Carnegie Mus 64: 1–33

    Google Scholar 

  • Biknevicius AR (1986) Dental function and diet in the Carpolestidae (Primates, Plesiadapiformes). Am J Phys Anthropol 71: 157–171

    Article  CAS  PubMed  Google Scholar 

  • Bloch JI, Boyer DM (2002) Grasping primate origins. Science 298: 1606–1610

    Article  CAS  PubMed  Google Scholar 

  • Bloch JI, Boyer DM (2003) Response to comment on “Grasping primate origins”. Science 300: 741c

    Article  Google Scholar 

  • Bloch JI, Boyer DM (in press) New skeletons of Paleocene-Eocene Plesiadapiformes: a diversity of arboreal positional behaviors in early primates. In: Ravosa MJ, Dagosto M (eds) Primate origins and adaptations: a multidisciplinary perspective. Plenum Press, New York

    Google Scholar 

  • Bloch JI, Silcox MT (2001) New basicrania of Paleocene-Eocene Ignacius: re-evaluation of the plesiadapiform-dermopteran link. Am J Phys Anthropol 116: 184–198

    Article  CAS  PubMed  Google Scholar 

  • Bloch JI, Silcox MT (2003) Comparative cranial anatomy and cladistic analysis of Paleocene primate Carpolestes simpsoni using ultra high resolution X-ray computed tomography. Am J Phys Anthropol 120(S1): 68

    Google Scholar 

  • Bloch JI, Silcox MT (2006) Cranial anatomy and relationships of Paleocene plesiadapiform Carpolestes simpsoni (Mammalia, Primates) using ultra high-resolution X-ray computed tomography. J Hum Evol 50: 1–35

    Google Scholar 

  • Bloch JI, Silcox MT, Sargis EJ (2002) Origin and relationships of Archonta (Mammalia, Eutheria): re-evaluation of Eudermoptera and Primatomorpha. J Vert Paleontol 22(Suppl. to 3): 37A

    Article  Google Scholar 

  • Bloch JI, Boyer DM, Houde P (2003) New skeletons of Paleocene-Eocene micromomyids (Mammalia, Primates): functional morphology and implications for euarchontan relationships. J Vert Paleontol 23(Suppl. to 3): 35A

    Google Scholar 

  • Bloch JI, Silcox MT, Boyer DM, Sargis EJ (submitted) New Palaeocene skeletons root the primate tree

    Google Scholar 

  • Boyer DM, Bloch JI, Gingerich PD (2001) New skeletons of Paleocene paromomyids (Mammalia, ?Primates): were they mitten gliders? J Vert Paleontol 21(Suppl. to 3): 35A

    Google Scholar 

  • Boyer DM, Bloch JI, Silcox MT, Gingerich PD (2004) New observations on the anatomy of Nannodectes (Mammalia, Primates) from the Paleocene of Montana and Colorado. J Vert Paleontol 24(Suppl. to 3): 40A

    Google Scholar 

  • Butler PM (1972) The problem of insectivore classification. In: Joysey KA, Kemp TS (eds) Studies in vertebrate evolution. Oliver and Boyd, Edinburgh, pp 253–265

    Google Scholar 

  • Carlsson A (1922) Über die Tupaiidae und ihre Beziehungen zu den Insectivora und den Prosimiae. Acta Zool 3: 227–270

    Article  Google Scholar 

  • Cartmill M(1970)The orbits of arboreal mammals: a reassessment of the arboreal theory of primate evolution. Ph.D. dissertation. University of Chicago, Chicago Illinois

    Google Scholar 

  • Cartmill M (1972) Arboreal adaptations and the origin of the order Primates. In: Tuttle R (ed) The functional and evolutionary biology of primates. Aldine-Atherton, Chicago, pp 97–122

    Google Scholar 

  • Cartmill M (1974) Rethinking primate origins. Science 184: 436–443

    Article  CAS  PubMed  Google Scholar 

  • Cartmill M (1992) New views on primate origins. Evol Anthrop 1: 105–111

    Article  Google Scholar 

  • Cartmill M (1993) A view to a death in the morning: hunting and nature through history. Harvard University Press, Cambridge

    Google Scholar 

  • Crompton RH (1995) “Visual predation,” habitat structure, and the ancestral primate niche. In: Alterman L, Doyle GA, Izard MK (eds) Creatures of the dark: the nocturnal prosimians. Plenum Press, New York, pp 11–30

    Chapter  Google Scholar 

  • Dagosto M (1988) Implications of postcranial evidence for the origin of euprimates. J Hum Evol 17: 35–56

    Article  Google Scholar 

  • De Queiroz K, Gauthier J (1990) Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Syst Zool 39: 307–322

    Article  Google Scholar 

  • Ducrocq S, Buffetaut E, Buffetaut-Tong H, Jaeger J-J, Jongkanjanasoontorn Y, Suteethorn Y (1992) First fossil flying lemur: a dermopteran from the Late Eocene of Thailand. Palaeontol 35: 373–380

    Google Scholar 

  • Fleagle JG (1999) Primate adaptation and evolution, vol. 2. Academic Press, San Diego

    Google Scholar 

  • Fox RC (1991) Saxonella (Plesiadapiformes: ?Primates) in North America: S. naylori, sp. nov., from the late Paleocene of Alberta, Canada. J Vert Paleontol 11: 334–349

    Article  Google Scholar 

  • Franzen JL, Wilde V (2003) First gut content of a fossil primate. J Hum Evol 44: 373–378

    Article  PubMed  Google Scholar 

  • Fu J-F, Wang J-W, Tong Y-S (2002) The new discovery of the Plesiadapiformes from the early Eocene of Wutu Basin, Shandong Province. Vert PalAsiat 40: 219–227

    Google Scholar 

  • Garber P (1980) Locomotor behavior and feeding ecology of the Panamanian tamarin (Saguinus oedipus geoffroyi, Callitrichidae, Primates). Int J Primatol 1: 185–201

    Article  Google Scholar 

  • Gheerbrant E, Sudre J, Sen S, Abrial C, Marandat B, Sigé B, Vianey-Liaud M (1998) Nouvelles données sur les mammifères du Thanetien et de l'Ypresien du Bassin d'Ouarzazate (Maroc) et leur contexte stratigraphique. Palaeovertebrata 27: 155–202

    Google Scholar 

  • Gidley JW (1923) Paleocene primates of the Fort Union, with discussion of relationships of Eocene primates. Proc US Natl Mus 63: 1–38

    Article  Google Scholar 

  • Gingerich PD (1976) Cranial anatomy and evolution of early Tertiary Plesiadapidae (Mammalia, Primates). Univ Mich Pap Palaeontol 15: 1–141

    Google Scholar 

  • Gingerich PD, Gunnell GF (1992) A new skeleton of Plesiadapis cookei. The Display Case 6: 1–2

    Google Scholar 

  • Gregory WK (1910) The orders of mammals. Bull Am Mus Nat Hist 27: 1–524

    Google Scholar 

  • Gunnell GF, Morgan ME, Maas MC, Gingerich PD (1995) Comparative paleoecology of Paleogene and Neogene mammalian faunas: trophic structure and composition. Palaeogeogr Palaeoclimatol Palaeoecol 115: 265–286

    Article  Google Scholar 

  • Hamrick MW, Rosenman BA, Brush JA (1999) Phalangeal morphology of the Paromomyidae (?Primates, Plesiadapiformes): the evidence for gliding behavior reconsidered. Am J Phys Anthropol 109: 397–413

    Article  CAS  PubMed  Google Scholar 

  • Heesy C, Ross C (2004) The nocturnal origin of the Order Primates. J Vert Paleontol 24(Suppl. to 3): 69A

    Google Scholar 

  • Hoffstetter R (1977) Phylogénie des primates. Bull Mém Soc Anthrop Paris t4, série XIII: 327–346

    Article  Google Scholar 

  • Hooker JJ (2001) Tarsals of the extinct insectivoran family Nyctitheriidae (Mammalia): evidence for archontan relationships. Zool J Linn Soc 132: 501–529

    Article  Google Scholar 

  • Johnston PA, Fox RC (1984) Paleocene and late Cretaceous mammals from Saskatchewan, Canada. Palaeontographica Abt A 186: 163–222

    Google Scholar 

  • Kay RF (2003) The primate fossil record. Am J Hum Biol 15: 839–840

    Article  Google Scholar 

  • Kay RF, Cartmill M (1977) Cranial morphology and adaptations of Palaechthon nacimienti and other Paromomyidae (Plesiadapoidea, ?Primates), with a description of a new genus and species. J Hum Evol 6: 19–53

    Article  Google Scholar 

  • Kay RF, Thorington RW Jr, Houde P (1990) Eocene plesiadapiform shows affinities with flying lemurs not primates. Nature 345: 342–344

    Article  Google Scholar 

  • Kay RF, Thewissen JGM, Yoder AD (1992) Cranial anatomy of Ignacius graybullianus and the affinities of the Plesiadapiformes. Am J Phys Anthrop 89: 477–498

    Article  Google Scholar 

  • Kirk EC, Cartmill M, Kay RF, Lemelin P (2003) Comment on “Grasping Primate Origins”. Science 300: 741

    Article  CAS  PubMed  Google Scholar 

  • Krause DW (1991) Were paromomyids gliders? Maybe, maybe not. J Hum Evol 21: 177–188

    Article  Google Scholar 

  • Le Gros Clark WE (1925) On the skull of Tupaia. Proc Zool Soc Lond 1925: 559–567

    Google Scholar 

  • Le Gros Clark WE (1926) On the anatomy of the pen–tailed tree shrew (Ptilocercus lowii). Proc Zool Soc Lond 1926: 1179–1309

    Article  Google Scholar 

  • Le Gros Clark WE (1959) The antecedents of Man. Quadrangle Books, Chicago

    Google Scholar 

  • Lewin R (1987) Bones of contention. Simon and Schuster, New York

    Google Scholar 

  • Liu F-GR, Miyamoto MM, Freire NP, Ong PQ, Tennant MR, Young TS, Gugel KF (2001) Molecular and morphological supertrees for eutherian (placental) mammals. Science 291: 1786–1789

    Article  CAS  PubMed  Google Scholar 

  • Lofgren DL (1995) The Bug Creek problem and the Cretaceous-Tertiary boundary at McGuire Creek, Montana. Univ Calif Publ Geol Sci 140: 1–185

    Google Scholar 

  • MacPhee RDE, Cartmill M, Gingerich PD (1983) New Paleogene primate basicrania and the definition of the order Primates. Nature 301: 509–511

    Article  CAS  PubMed  Google Scholar 

  • Martin RD (1968) Towards a new definition of Primates. Man 3: 377–401

    Article  Google Scholar 

  • Martin RD (1986) Primates: a definition. In: Wood B, Martin L, Andrews P (eds) Major topics in primate and human evolution. Cambridge University Press, Cambridge, pp 1–31

    Google Scholar 

  • Martin RD (1990) Primate origins and evolution: a phylogenetic reconstruction. Princeton University Press, Princeton NJ

    Google Scholar 

  • Martin RM (2004) Chinese lantern for early primates. Nature 427: 22–23

    Article  CAS  PubMed  Google Scholar 

  • Matthew WD, Granger W (1921) New genera of Paleocene mammals. Am Mus Novit 13: 1–7

    Google Scholar 

  • McHenry HM, Coffing K (2000) Australopithecus to Homo: transformations in body and mind. Annu Rev Anthropol 29: 125–146

    Article  Google Scholar 

  • McKenna MC (1966) Paleontology and the origin of the Primates. Folia Primatol 4: 1–25

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC (1975) Toward a phylogenetic classification of the Mammalia. In: Luckett WP, Szalay FS (eds) Phylogeny of the Primates. Plenum Press, New York, pp 21–46

    Chapter  Google Scholar 

  • McKenna MC, Bell SK (1997) Classification of mammals above the species level. Columbia University Press, New York

    Google Scholar 

  • Mivart G St (1873) On Lepilemur and Cheirogaleus, and on the zoological rank of the Lemuroidea. Proc Zool Soc Lond 1873: 484–510

    Google Scholar 

  • Miyamoto MM, Porter CA, Goodman M (2000) c-Myc gene sequences and the phylogeny of bats and other eutherian mammals. Syst Biol 49: 501–514

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O'Brien SJ (2001a) Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling EC, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001b) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348–2351

    Article  CAS  PubMed  Google Scholar 

  • Napier JR, Napier PH (1967) A handbook of living primates. Academic Press, London

    Google Scholar 

  • Niemitz C (1979) Outline of the behavior of Tarsius bancanus. In: Doyle GA, Martin RD (eds) The study of prosimian behavior. Academic Press, New York, pp 631–660

    Google Scholar 

  • Ni X, Wang Y, Hu Y, Li C (2004) A euprimate skull from the early Eocene of China. Nature 427: 65–68

    Article  CAS  PubMed  Google Scholar 

  • Novacek MJ (1992) Mammalian phylogeny: shaking the tree. Nature 356: 121–125

    Article  CAS  PubMed  Google Scholar 

  • Novacek MJ, Wyss AR (1986) Higher-level relationships of the recent eutherian orders: morphological evidence. Cladistics 2: 257–287

    Article  Google Scholar 

  • Olson LE, Sargis EJ, Martin RD (2004) Phylogenetic relationships among treeshrews (Scandentia): a review and critique of the morphological evidence. J Mamm Evol 11: 49–71

    Article  Google Scholar 

  • Olson LE, Sargis EJ, Martin RD (2005) Intraordinal phylogenetics of treeshrews (Mammalia: Scandentia) based on evidence from the mitochondrial 12S rRNA gene. Mol Phylogenet Evol 35: 656–673

    Article  CAS  PubMed  Google Scholar 

  • Pumo DE, Finamore PS, Franek WR, Phillips CJ, Tarzami S, Balzarano D (1998) Complete mitochondrial genome of a neotropical fruit bat, Artibeus jamaicensis and a new hypothesis of the relationships of bats to other eutherian mammals. J Mol Evol 47: 709–717

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen DT (1990) Primate origins: lessons from a neotropical marsupial. Am J Primatol 22: 263–277

    Article  Google Scholar 

  • Ravosa MJ, Savakova DG (2004) Euprimate origins: the eyes have it. J Hum Evol 46: 355–362

    Article  Google Scholar 

  • Rose KD (1981) The Clarkforkian Land-Mammal Age and mammalian faunal composition across the Paleocene-Eocene boundary. Univ Mich Mus Pap Paleontol 26: 1–197

    Google Scholar 

  • Rose KD (1995) The earliest primates. Evol Anthropol 3: 159–173

    Article  Google Scholar 

  • Rose KD, Walker AC (1985) The skeleton of early Eocene Cantius, oldest lemuriform primate. Am J Phys Anthropol 66: 73–89

    Article  CAS  PubMed  Google Scholar 

  • Rowe T (1987) Definition and diagnosis in the phylogenetic system. Syst Zool 36: 208–211

    Article  Google Scholar 

  • Runestad JA, Ruff CB (1995) Structural adaptations for gliding in mammals with implications for locomotor behavior in paromomyids. Am J Phys Anthropol 98: 101–119

    Article  CAS  PubMed  Google Scholar 

  • Russell DE (1964) Les mammifères Paléocène d'Europe. Mém Mus Hist nat nouvelle série 13: 1–324

    Google Scholar 

  • Sargis EJ (2001a) A preliminary qualitative analysis of the axial skeleton of tupaiids (Mammalia, Scandentia): functional morphology and phylogenetic implications. J Zool Lond 253: 473–483

    Article  Google Scholar 

  • Sargis EJ (2001b) The grasping behaviour, locomotion and substrate use of the tree shrews Tupaia minor and T. tana (Mammalia, Scandentia). J Zool Lond 253: 485–490

    Article  Google Scholar 

  • Sargis EJ (2002a) Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 253: 10–42

    Article  PubMed  Google Scholar 

  • Sargis EJ (2002b) Functional morphology of the hindlimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 254: 149–185

    Article  PubMed  Google Scholar 

  • Sargis EJ (2002c) A multivariate analysis of the postcranium of tree shrews (Scandentia, Tupaiidae) and its taxonomic implications. Mammalia 66: 579–598

    Article  Google Scholar 

  • Sargis EJ (2002d) The postcranial morphology of Ptilocercus lowii (Scandentia, Tupaiidae): an analysis of primatomorphan and volitantian characters. J Mamm Evol 9: 137–160

    Article  Google Scholar 

  • Sargis EJ (2002e) Primate origins nailed. Science 298: 1564–1565

    Article  CAS  PubMed  Google Scholar 

  • Sargis EJ (2004) New views on tree shrews: the role of tupaiids in primate supraordinal relationships. Evol Anthropol 13: 56–66

    Article  Google Scholar 

  • Sargis EJ (in press) The postcranial morphology of Ptilocercus lowii (Scandentia, Tupaiidae) and its implications for primate supraordinal relationships. In: Ravosa MJ, Dagosto M (eds) Primate origins and adaptations: a multidisciplinary perspective. Plenum Press, New York

    Google Scholar 

  • Sigé B, Jaeger J-J, Sudre J, Vianey-Liaud M (1990) Altiatlasius koulchii n. gen et sp., primate omomyidé du paléocène supérieur du Maroc, et les origines des euprimates. Palaeontographica 212: 1–24

    Google Scholar 

  • Silcox MT (2001) A phylogenetic analysis of Plesiadapiformes and their relationship to Euprimates and other archontans. Ph.D. dissertation, Johns Hopkins School of Medicine, Baltimore Maryland

    Google Scholar 

  • Silcox MT (2003) New discoveries on the middle ear anatomy of Ignacius graybullianus (Paromomyidae, Primates) from ultra high resolution X-ray computed tomography. JHum Evol 44: 73–86

    Article  Google Scholar 

  • Silcox MT (in press) Primate taxonomy, plesiadapiforms, and approaches to primate origins. In: Ravosa MJ, Dagosto M (eds) Primate origins and adaptations: a multidisciplinary perspective. Plenum Press, New York

    Google Scholar 

  • Silcox MT, Gunnell GF (in press) Plesiadapiformes. In: Janis CM, Gunnell GF, Uhen MD (eds) Evolution of tertiary mammals of North America. Vol 2: Marine mammals and smaller terrestrial mammals. Cambridge University Press, Cambridge

    Google Scholar 

  • Silcox MT, Bloch JI, Sargis EJ, Boyer DM (2005) Euarchonta (Dermoptera, Scandentia, Primates). In: Rose KD, Archibald JD (eds) The rise of placental mammals: origins and relationships of the major extant clades. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Simmons NB (1994) The case for chiropteran monophyly. Am Mus Novit 3103: 1–54

    Google Scholar 

  • Smith T, Van Itterbeeck J, Missiaen P (2004) Oldest plesiadapiform (Mammalia, Proprimates) from Asia and its palaeobiogeographical implications for faunal interchange with North America. CR Palevol 3: 43–52

    Article  Google Scholar 

  • Springer MS, Murphy WJ, Eizirik E, O'Brien SJ (2003) Placental mammal diversification and the Cretaceous–Tertiary boundary. Proc Natl Acad Sci USA 100: 1056–1061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Springer MS, Stanhope MJ, Madsen O, de Jong WW (2004) Molecules consolidate the placental mammal tree. Trends Ecol Evol 19: 430–438

    Article  PubMed  Google Scholar 

  • Stafford BJ, Thorington RW Jr (1998) Carpal development and morphology in archontan mammals. J Morphol 235: 135–155

    Article  CAS  PubMed  Google Scholar 

  • Stafford BJ, Szalay FS (2000) Craniodental functional morphology and taxonomy of dermopterans. J Mammal 81: 360–385

    Article  Google Scholar 

  • Storch G, Richter G (1994) Zur Paläobiologie Messeler Igel. Natur u. Museum 124: 81–90

    Google Scholar 

  • Strait SG (2001) Dietary reconstruction of small-bodied omomyoid primates. J Vert Palaeontol 21: 322–334

    Article  Google Scholar 

  • Sussman RW (1991) Primate origins and the evolution of angiosperms. Am J Primatol 23: 209–223

    Article  Google Scholar 

  • Sussman RW, Raven RH (1978) Pollination of flowering plants by lemurs and marsupials: a surviving archaic coevolutionary system. Science 200: 731–736

    Article  CAS  PubMed  Google Scholar 

  • Szalay FS (1968) The beginnings of primates. Evolution 22: 19–36

    Article  Google Scholar 

  • Szalay FS (1969) Mixodectidae, Microsyopidae, and the insectivore-primate transition. Bull Am Mus Nat Hist 140: 195–330

    Google Scholar 

  • Szalay FS (1972) Paleobiology of the earliest primates. In: Tuttle RH (ed) The functional and evolutionary biology of primates. Aldine-Atherton, Chicago, pp 3–35

    Google Scholar 

  • Szalay FS (1975) Where to draw the nonprimate-primate taxonomic boundary. Folia Primatol 23: 158–163

    Article  CAS  PubMed  Google Scholar 

  • Szalay FS (1977) Phylogenetic relationships and a classification of the eutherian Mammalia. In: Hecht MK, Goody PC, Hecht BM (eds) Major patterns in vertebrate evolution. Plenum Press, New York, pp 315–374

    Chapter  Google Scholar 

  • Szalay FS (1981) Phylogeny and the problem of adaptive significance: the case of the earliest primates. Folia Primatol 36: 157–182

    Article  CAS  PubMed  Google Scholar 

  • Szalay FS, Dagosto M (1980) Locomotor adaptations as reflected on the humerus of Paleogene Primates. Folia Primatol 34: 1–45

    Article  CAS  PubMed  Google Scholar 

  • Szalay FS, Dagosto M (1988) Evolution of hallucial grasping in primates. J Hum Evol 17: 1–33

    Article  Google Scholar 

  • Szalay FS, Decker RL (1974) Origins, evolution, and function of the tarsus in late Cretaceous Eutheria and paleocene primates In: Jenkins FA Jr (eds) Primate locomotion. Academic Press, New York, pp 223–359

    Google Scholar 

  • Szalay FS, Delson E (1979) Evolutionary history of the primates. Academic Press, New York

    Google Scholar 

  • Szalay FS, Drawhorn G (1980) Evolution and diversification of the Archonta in an arboreal milieu. In: Luckett WP (ed) Comparative biology and evolutionary relationships of tree shrews. Plenum Press, New York, pp 133–169

    Chapter  Google Scholar 

  • Szalay FS, Lucas SG (1993) Cranioskeletal morphology of archontans, and diagnoses of Chiroptera, Volitantia, and Archonta. In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum Press, New York, pp 187–226

    Chapter  Google Scholar 

  • Szalay FS, Lucas SG (1996) The postcranial morphology of Paleocene Chriacus and Mixodectes and the phylogenetic relationships of archontan mammals. Bull New Mex Mus Nat Hist Sci 7: 1–47

    Google Scholar 

  • Szalay FS, Tattersall I, Decker RL (1975) Phylogenetic relationships of Plesiadapis: postcranial evidence. In: Szalay FS (ed) Approaches to primate paleobiology. Karger, Basel, pp 136–166

    Google Scholar 

  • Szalay FS, Rosenberger AL, Dagosto M (1987) Diagnosis and differentiation of the order Primates. Yrbk Phys Anthropol 30: 75–105

    Article  Google Scholar 

  • Tabuce R, Mahboubi M, Tafforeau P, Sudre J (2004) Discovery of a highly-specialized plesiadapiform primate in the early-middle Eocene of northwestern Africa. J Hum Evol 47: 305–321

    Article  PubMed  Google Scholar 

  • Tong Y (1988) Fossil tree shrews from the Eocene Hetaoyuan formation of Xichuan, Henan. Vert PalAsiat 26: 214–220

    Google Scholar 

  • Van Valen LM (1994) The origin of the plesiadapid primates and the nature of Purgatorius. Evol Monogr 15: 1–79

    Google Scholar 

  • Van Valen LM, Sloan RE (1965) The earliest primates. Science 150: 743–745

    Article  CAS  PubMed  Google Scholar 

  • Waddell PJ, Okada N, Hasegawa M (1999) Towards resolving the interordinal relationships of placental mammals. Syst Biol 48: 1–5

    Article  CAS  PubMed  Google Scholar 

  • Wible JR (1993) Cranial circulation and relationships of the colugo Cynocephalus (Dermoptera, Mammalia). Am Mus Novit 3072: 1–27

    Google Scholar 

  • Wible JR, Covert HH (1987) Primates: cladistic diagnosis and relationships. J Hum Evol 16: 1–22

    Article  Google Scholar 

  • Wible JR, Martin JR (1993) Ontogeny of the tympanic floor and roof in archontans. In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum Press, New York, pp 111–146

    Chapter  Google Scholar 

Download references

Acknowledgments

Our thanks to P.D. Gingerich, K.D. Rose, F.S. Szalay, A.C. Walker, and J.G. Fleagle for conversations relevant to this chapter. We thank Annette Zitzmann for providing the photo of Ptilocercus in Figure 1.1 . Research was funded by grants from NSERC, Wenner-Gren, the Paleobiological Fund, Sigma Xi, NSF (SBR-9815884), and the University of Winnipeg to MTS; NSF (BCS-0129601) to G.F. Gunnell, P.D. Gingerich, and JIB; NSF (SBR-9616194), Field Museum of Natural History, Sigma Xi, and the Yale University Social Science Faculty Research Fund to EJS; 2002 NSFGRF to DMB.

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg New York

About this entry

Cite this entry

Silcox, M.T., Sargis, E.J., Bloch, J.I., Boyer, D.M. (2007). 1 Primate Origins and Supraordinal Relationships: Morphological Evidence. In: Handbook of Paleoanthropology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33761-4_29

Download citation

Publish with us

Policies and ethics