Skip to main content

Ethylene and Leaf Senescence

  • Chapter
Ethylene Action in Plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles FB (1973) Ethylene in plant biology. Academic, New York.

    Google Scholar 

  • Abeles FB, Rubinstein B (1964) Regulation of ethylene evolution and leaf abscission by auxin. Plant Physiol 39:963–969.

    Article  PubMed  CAS  Google Scholar 

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2nd edn. Academic, New York.

    Google Scholar 

  • Akhtar MS, Goldschmidt EE, John I, Rodoni S, Matile P, Grierson D (1999) Altered patterns of senescence and ripening in gf, stay green mutant of tomato (Lycopersicon esculentum Mill.). J Exp Bot 50:1115–1122.

    Article  CAS  Google Scholar 

  • Appleton BL, Spivey AD, French SC (1996) Virginia cut holly production pruning, harvesting and marketing. Virg Coop Ext Publ 8:430–470.

    Google Scholar 

  • Atsumi S, Hayashi T (1979) Examination of the pronounced increase in auxin content of senescent leaves. Plant Cell Physiol 20:861–865.

    CAS  Google Scholar 

  • Baardseth P, Von Elbe JH (1989) Effects of ethylene, free fatty acid, and some enzyme systems on chlorophyll degradation. J Food Sci 54:1361–1363.

    Article  CAS  Google Scholar 

  • Bartoli CG, Simontacchi M, Montaldi E, Puntarulo S (1996) Oxidative stress, antioxidant capacity and ethylene production during ageing of cut carnation (Dianthus caryophyllus) petals. J Exp Bot 297:595–601.

    Article  Google Scholar 

  • Binyamin L, Falah M, Portnoy V, Soudri E, Gepstein S (2001) The early light-induced protein is also produced during leaf senescence. Planta 212:591–597.

    Article  PubMed  CAS  Google Scholar 

  • Broschat TK, Donselman H (1987) Potential of 57 species of tropical ornamental plants for cut foliage use. Hort Sci 22:911–913.

    Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199.

    Article  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence: a genomics approach. Plant Biotech J 1:3–22.

    Article  CAS  Google Scholar 

  • Burgheimer F, McGill JN, Nelson AI, Stienberg MP (1967) Chemical changes in spinach stored in air and controlled atmosphere. Food Tech 21:109–111.

    Google Scholar 

  • Celikel FG, Dodge LL, Reid MS (2002) Efficacy of 1-MCP (1-methylciclopropene) and promalin for extending the post-harvest life of oriental lilies (Lilium x “Mona Lisa” and “Stargazer”). Sci Hort 93:149–155.

    Article  CAS  Google Scholar 

  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein Ethyleneinsensitive3 and related proteins. Cell 89:1133–1144.

    Article  PubMed  CAS  Google Scholar 

  • Chen GH, Huang LT, Yap MN, Lee RH, Huang YJ, Cheng MC, Chen SCG (2002) Molecular characterization of a senescence-associated gene encoding cysteine proteinase and its gene expression during leaf senescence in sweet potato. Plant Cell Physiol 43:984–991.

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Dietrich RA, Thomas H (2000) Senescence and programmed cell death. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry & molecular biology of plants. Am Soc Plant Physiol, Rockville, pp 1044–1101.

    Google Scholar 

  • Denney JO, Martin GC (1994) Ethephon tissue penetration and harvest effectiveness in olive as a function of solution pH, application time, and BA or NAA addition. J Am Soc Hort Sci 119:1185–1192.

    CAS  Google Scholar 

  • Dolci M, Deambrogio F, Accati E (1989) Post-harvest life of stems of Asparagus plumosus (Baker). Adv Hort Sci 3:47–50.

    Google Scholar 

  • Fang Z, Bouwkamp JC, Solomos T (1998) Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L. J Exp Bot 49:503–510.

    Article  CAS  Google Scholar 

  • Feng XQ, Apelbaum A, Sisler EC, Goren R (2004) Control of ethylene activity in various plant systems by structural analogues of 1-methylcyclopropene. Plant Growth Regul 42:29–38.

    Article  CAS  Google Scholar 

  • Ferrante A, Mensuali-Sodi A, Serra G, Tognoni F (1998) Ethylene production and vase life in cut Eucalyptus spp. foliage. Ital Hort 5/6:57–60.

    Google Scholar 

  • Ferrante A, Hunter DA, Wesley PH, Reid MS (2002a) Thidiazuron: a potent inhibitor of leaf senescence in Alstroemeria. Postharvest Biol Technol 25:333–338.

    Article  CAS  Google Scholar 

  • Ferrante A, Mensuali-Sodi A, Serra G, Tognoni F (2002b) Effects of ethylene and cytokinins on vase life of cut Eucalyptus parvifolia Cambage branches. Plant Growth Regul 38:119–125.

    Article  CAS  Google Scholar 

  • Ferrante A, Mensuali-Sodi A, Serra G, Tognoni F (2003) Treatment with thidiazuron for preventing leaf yellowing in cut tulips, and chrysanthemum. Acta Hort 624:357–363.

    CAS  Google Scholar 

  • Fjeld T, Melberg, Hogetveit WR (1995) Ethylene sensitivity and ethylene production in English holly (Ilex aquifolium L.). Acta Hort 405:306–313.

    CAS  Google Scholar 

  • Forrest M (1991) Post-harvest treatment of cut foliage. Acta Hort 298:255–261.

    Google Scholar 

  • Foyer CH, Descourvières P, Kunert KJ (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17:507–523.

    Article  CAS  Google Scholar 

  • Foyer CH, Vanacker H, Gomez LD, Harbinson J (2002) Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review. Plant Physiol Biochem 40:659–668.

    Article  CAS  Google Scholar 

  • Fujino DW, Reid MS (1983) Factors affecting the vase life of fronds of maidenhair fern. Sci Hort 21:181–188.

    Article  CAS  Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988.

    Article  PubMed  CAS  Google Scholar 

  • Gepstein S, Sabehi G, Carp MJ, Hajouj T, Nesher MFO, Yariv I, Dor O, Bassani M (2003) Large-scale identification of leaf senescence-associated genes. Plant J 36:629–642.

    Article  PubMed  CAS  Google Scholar 

  • Gerasopoulos D, Metzidakis I, Naoufel E (1999) Ethephon sprays affect harvest parameters of “Mastoides” olives. Acta Hort 474:223–226.

    CAS  Google Scholar 

  • Grbic V, Bleecker AB (1995) Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J 8:595–602.

    Article  CAS  Google Scholar 

  • Hajouj T, Michelis R, Gepstein S (2000) Cloning and characterization of a receptor-like protein kinase gene associated with senescence. Plant Physiol 124:1305–1314.

    Article  PubMed  CAS  Google Scholar 

  • Hodges DM, Forney CF (2000) The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. J Exp Bot 51:645–655.

    Article  PubMed  CAS  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1996) Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol Plant 98:685–692.

    Article  CAS  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997a) Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. J Exp Bot 48:1105–1113.

    Article  CAS  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997b) Antioxidant enzyme and compound responses to chilling stress and their combining abilities in differentially sensitive maize hybrids. Crop Sci 37:857–863.

    Article  CAS  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271.

    Article  PubMed  CAS  Google Scholar 

  • Hunter DA, Yoo SD, Butcher SM, McManus MT (1999) Expression of 1-aminocyclopropane-1-carboxylate oxidase during leaf ontogeny in white clover. Plant Physiol 120:131–141.

    Article  PubMed  CAS  Google Scholar 

  • Irigoyen JJ, Emerich DW, Sánchez-Diaz M (1992) Alfalfa leaf senescence induced by drought stress: photosynthesis, hydrogen peroxide metabolism, lipid peroxidation and ethylene evolution. Physiol Plant 84:67–72.

    Article  CAS  Google Scholar 

  • Jiao D, Benhua JI, Li X (2003) Characteristics of chlorophyll fluorescence and membrane lipid peroxidation during senescence of flag leaf in different cultivars of rice. Photosynthetica 41:33–41.

    Article  CAS  Google Scholar 

  • Joyce DC, Reid MS, Evans RY (1990) Silver thiosulfate prevents ethylene-induced abscission in Holly and Mistletoe. Hort Sci 25:90–92.

    CAS  Google Scholar 

  • Khan NA (2003) NaCl-inhibited chlorophyll synthesis and associated changes in ethylene evolution and antioxidative enzyme activities in wheat. Biol Plant 47:437–440.

    Article  CAS  Google Scholar 

  • Kingston-Smith AH, Thomas H, Foyer CH (1997) Chlorophyll a fluorescence, enzyme and antioxidant analyses provide evidence for the operation of alternative electron sinks during leaf senescence in a stay-green mutant of Festuca pratensis. Plant Cell Environ 20:1323–1337.

    Article  CAS  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307.

    Article  CAS  Google Scholar 

  • Kunert KJ, Ederer M (1985) Leaf aging and lipid peroxidation: the role of the antioxidants vitamin C and E. Physiol Plant 65:85–88.

    Article  CAS  Google Scholar 

  • Leshem YY (1988) Plant senescence processes and free radicals. In: Pryor WA (ed) Free radical biology and medicine. Pergamon Press, New York, pp 39–49.

    Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398.

    Article  CAS  Google Scholar 

  • Matile P, Schellenberg M, Vicentini F (1997) Localization of chlorophyllase in the chloroplast envelope. Planta 201:96–99.

    Article  CAS  Google Scholar 

  • Meir S, Kanner K, Akiri B, Philosoph-Hadas S (1995) Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J Agric Food Chem 43:1813–1819.

    Article  CAS  Google Scholar 

  • Monk LS, Fagerstedt KV, Crawford MM (1989) Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol Plant 76:456–459.

    CAS  Google Scholar 

  • Morgan PW, Hall DC (1964) Accelerated release of ethylene by cotton following application of indolyl-3-acetic acid. Nature 201:99.

    Article  CAS  Google Scholar 

  • Nam HG (1997) The molecular genetic analysis of leaf senescence. Curr Opin Biotech 8:200–207.

    Article  PubMed  CAS  Google Scholar 

  • Newman JP, Dodge L, Reid MS (1998) Evaluation of ethylene inhibitors for postharvest treatment of Gypsophila paniculata L. Hort Tech 8:58–63.

    Google Scholar 

  • Noodén LD, Guiamét JJ (1989) Regulation of assimilation and senescence by the fruit in monocarpic plants. Physiol Plant 77:267–274.

    Article  Google Scholar 

  • Oh SA, Park JH, Lee GI, Paek KH, Park SK, Nam HG (1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J 12:527–535.

    Article  PubMed  CAS  Google Scholar 

  • Olsson M (1995) Alterations in lipid composition, lipid peroxidation and anti-oxidative protection during senescence in drought stressed plants and non-drought stressed plants of Pisum sativum. Plant Physiol Biochem 33:547–553.

    CAS  Google Scholar 

  • Osborne DJ (1955) Acceleration of abscission by a factor produced in senescent leaves. Nature 176:1161–1163.

    Article  CAS  Google Scholar 

  • Park JH, Oh SA, Kim YH, Woo HR, Nam HG (1998) Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis. Plant Mol Biol 37:445–454.

    Article  PubMed  CAS  Google Scholar 

  • Philosoph-Hadas S, Meir S, Akiri B, Kanner J (1994) Oxidative defense systems in leaves of three edible herb species in relation to their senescence rate. J Agric Food Chem 42:2376–2381.

    Article  CAS  Google Scholar 

  • Reyes-Arribas T, Barrett JE, Huber DJ, Nell TA, Clark DG (2000) Leaf senescence in a non-yellowing cultivar of chrysanthemum (Dendranthema grandiflora). Physiol Plant 111:540–544.

    Article  Google Scholar 

  • Rugini E, Bongi G, Fontanazza G (1982) Effects of ethephon on olive ripening. J Am Soc Hort Sci 107:835–838.

    CAS  Google Scholar 

  • Sakakibara H, Taniguchi M, Sugiyama T (2000) His-Asp phosphorelay signaling: a communication avenue between plants and their environment. Plant Mol Biol 42:273–278.

    Article  PubMed  CAS  Google Scholar 

  • Smart CM (1994) Gene expression during leaf senescence. New Phytol 126:419–448.

    Article  CAS  Google Scholar 

  • Stamps RH, Nell TA (1986) Pre- and poststorage treatment of cut leatherleaf fern fronds with floral preservatives. Proc Fla State Hort Soc 99:260–263.

    CAS  Google Scholar 

  • Suttle JC (1986) Cytokinin-induced ethylene biosynthesis in nonsenescing cotton leaves. Plant Physiol 82:930–935.

    Article  PubMed  CAS  Google Scholar 

  • Taylor JE, Whitelaw CA (2001) Signals and abscission. New Phytol 151:323–339.

    Article  CAS  Google Scholar 

  • Thompson JE, Froese CD, Madey E, Smith MD, Hong Y (1998) Lipid metabolism during plant senescence. Prog Lipid Res 37:119–141.

    Article  PubMed  CAS  Google Scholar 

  • Tingley DR, Price TA (1990) Ethylene production and influence of silver thiosulfate on ethylene sensitivity of cut evergreens. Hort Sci 25:944–946.

    CAS  Google Scholar 

  • Trippi V, Thimann KV (1983) The exudation of solutes during senescence of oat leaves. Physiol Plant 58:21–28.

    Article  CAS  Google Scholar 

  • Vandenbussche F, Smalle J, Madeira-Saibo NJ, Paepe NJM, de Chaerle A, Tietz L, Smets O, Laarhoven R, Harren LJJ, Onckelen FJM, van Palme H, Verbelen J-P[Page No. 18], van der Straeten D (2003) The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Plant Physiol 131:1228–1238.

    Google Scholar 

  • Veen H, van de Geijn SC (1978) Mobility and ionic form of silver as related to longevity in cut carnation. Planta 140:93–96.

    Article  CAS  Google Scholar 

  • Weaver LM, Gan S, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol 37:455–469.

    Article  PubMed  CAS  Google Scholar 

  • Woeste KE, Vogel JP, Kieber JJ (1999) Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings. Physiol Plant 105:478–480.

    Article  CAS  Google Scholar 

  • Woltering EJ (1985) Sensitivity of various foliage and flowering potted plants to ethylene. Acta Hort 181:489–492.

    Google Scholar 

  • Woltering EJ (1987) Effects of ethylene on ornamental pot plants: a classification. Sci Hort 31:283–294.

    Article  Google Scholar 

  • Woltering EJ, van Doorn WG (1988) Role of ethylene in senescence of petals: morphological and taxonomical relationships. J Exp Bot 39:1605–1616.

    Article  CAS  Google Scholar 

  • Yoshida S (2003) Molecular regulation of leaf senescence. Curr Opin Plant Biol 6:79–84.

    Article  PubMed  CAS  Google Scholar 

  • Yu YB, Yang SF (1979) Auxin-induced ethylene production and its inhibition by aminoethoxyvinylglycine and cobalt ion. Plant Physiol 64:1074–1077.

    Article  PubMed  CAS  Google Scholar 

  • Zacarias L, Reid MS (1990) Role of growth regulators in the senescence of Arabidopsis thaliana leaves. Physiol Plant 80:549–554.

    Article  CAS  Google Scholar 

  • Zhong GY, Huberman M, Feng XQ, Sisler EC Holland D, Goren R (2001) Effect of 1-methylciclopropene on ethylene-induced abscission in citrus. Physiol Plant 113:134–141.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferrante, A., Francini, A. (2006). Ethylene and Leaf Senescence. In: Khan, N.A. (eds) Ethylene Action in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32846-9_3

Download citation

Publish with us

Policies and ethics