Skip to main content

Carbon and Water Tradeoffs in Conversions to Forests and Shrublands

  • Chapter
Terrestrial Ecosystems in a Changing World

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Archer S, Boutton TW, Hibbard K (2001) Trees in grasslands: biogeochemical consequences of woody plant expansion. In: Schulze ED, Heimann M, Harrison S, Holland EA, Lloyd J, Prentice I, Schimel DS (eds) Global biogeochemical cycles in the climate system. Academic Press, San Diego, Calif., pp 115–138

    Google Scholar 

  • Bosch JM, Hewlett JD (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology 55:3–23

    Google Scholar 

  • Bounoua L, Collatz GJ, Los SO, Sellers PJ, Dazlich DA, Tucker CJ, Randall DA (2000) Sensitivity of climate to changes in NDVI. Journal of Climate 13:2277–2292

    Google Scholar 

  • Boutton TW, Archer S, Midwood AJ, Zitzer SF, Bol R (1998) Delta 13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma 82:5–41

    Google Scholar 

  • Boutton TW, Archer S, Midwood AJ (1999) Stable isotopes in ecosystem science: Structure, function and dynamics of a subtropical savanna. Rapid Communications in Mass Spectrometry 13:1263–1277

    Google Scholar 

  • Bragg TB, Hulbert LC (1976) Woody plant invasion of unburned Kansas bluestem prairie. Journal of Range Management 29: 19–23

    Google Scholar 

  • Briggs JM, Hoch GA, Johnson LC (2002) Assessing the rate, mechanisms, and consequences of the conversion of tallgrass prairie to Juniperus virginiana forest. Ecosystems 5:578–586

    Google Scholar 

  • Brooks KN, Ffolliott PF, Gregersen HM, DeBano LF (1997) Hydrology and the management of watersheds, 2nd edition. Iowa State University Press, Ames, Iowa

    Google Scholar 

  • Brown AE, Zhang L, McMahon TA, Western AW, Vertessy RA (2005) A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology 310:28–61

    Google Scholar 

  • Buesseler KO, Boyd PW (2003) Will ocean fertilization work? Science 300:67–68

    Google Scholar 

  • Burke IC, Yonker CM, Parton WJ, Cole CV, Flach K, Schimel DS (1989) Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Science Society of America Journal 53:800–805

    Google Scholar 

  • Caldeira K, Duffy PB (2000) The role of the Southern Ocean in uptake and storage of anthropogenic carbon. Science 287:620–622

    Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Google Scholar 

  • Chisholm SW, Falkowski PG, Cullen JJ (2001) Dis-crediting ocean fertilization. Science 294:309–310

    Google Scholar 

  • Clark DB, Xue Y, Harding RJ, Valdes PJ (2001) Modeling the impact of land surface degradation on the climate of tropical North Africa. Journal of Climate 14:1809–1822

    Google Scholar 

  • Conant RT, Paustian K, Elliott ET (2001) Grassland management and conversion into grassland: Effects on soil carbon. Ecological Applications 11:343–355

    Google Scholar 

  • Connin SL, Virginia RA, Chamberlain CP (1997) Carbon isotopes reveal soil organic matter dynamics following arid land shrub expansion. Oecologia 110:374–386

    Google Scholar 

  • Copeland JH, Pielke RA, Kittel TGF (1996) Potential climatic impacts of vegetation change: A regional modeling study. Journal of Geophysical Research 101:7409–7418

    Google Scholar 

  • Dalal RC, Wang WJ, Robertson GP, Parton WJ (2003) Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Australian Journal of Soil Research 41:165–195

    Google Scholar 

  • DeLucia EH, Hamilton JG, Naidu SL, Thomas RB, Andrews JA, Finzi A, Lavine M, Matamala R, Mohan JE, Hendrey GR, Schlesinger WH (1999) Net Primary Production of a Forest Ecosystem with Experimental CO2 Enrichment. Science 284:1177–1179

    Google Scholar 

  • Dye PJ (1996) Climate, forest, and streamflow relationships in South African afforested catchments. Commonwealth Forestry Review 75(1):31–38

    Google Scholar 

  • Farley KA, Kelly EF, Hofstede RGM (2004) Soil organic carbon and water retention following conversion of grasslands to pine plantations in the Ecuadorian Andes. Ecosystems 7:729–739

    Google Scholar 

  • Farley KA, Jobbagy EG, Jackson RB (2005) Effects of afforestation on water yield: a global synthesis with implications for policy. Global Change Biology 11:1565–1576

    Google Scholar 

  • Fensham RJ, Fairfax RJ (2003) Assessing woody vegetation cover change in north-west Australian savanna using aerial photography. International Journal of Wildland Fire 12:359–367

    Google Scholar 

  • Gebhart DL, Johnson HB, Mayeux HS, Polley HW (1994) The CRP increases soil organic-carbon. Journal of Soil and Water Conservation 49:488–492

    Google Scholar 

  • Gill RA, Burke IC (1999) Ecosystem consequences of plant life form changes at three sites in the semiarid United States. Oecologia 121:551–563

    Google Scholar 

  • Grace J, Lloyd J, Miranda AC, Miranda H, Gash JHC (1998) Fluxes of carbon dioxide and water vapour over a C4 pasture in southwestern Amazonia (Brazil). Australian Journal of Plant Physiology 25:519–530

    Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Global Change Biology 8:345–360

    Google Scholar 

  • Hahmann AN, Dickinson RE (1997) RCCM2-BATS Model over tropical South America: Applications to tropical deforestation. Journal of Climate 10:1944–1964

    Google Scholar 

  • Halliday JC, Tate KR, McMurtrie RE, Scott NA (2003) Mechanisms for changes in soil carbon storage with pasture to Pinus radiata land-use change. Global Change Biology 9:1294–1308

    Google Scholar 

  • Hamilton JG, DeLucia EH, George K, Naidu SL, Finzi AC, Schlesinger WH (2002) Forest carbon balance under elevated CO2. Oecologia 131:250–260

    Google Scholar 

  • Herron N, Davis R, Jones R (2002) The effects of large-scale afforestation and climate change on water allocation in the Macquarie River catchment, NSW, Australia. Journal of Environmental Management 65:369–381

    Google Scholar 

  • Hibbard K, Archer S, Schimel DS, Valentine DW (2001) Biogeochemical changes accompanying woody plant encroachment in a subtropical savanna. Ecology 82:1999–2011

    Google Scholar 

  • Hicke JA, Sherriff RL, Veblen TT, Asner GP (2004) Carbon accumulation in Colorado ponderosa pine stands. Canadian Journal of Forest Research 34:1283–1295

    Google Scholar 

  • Hoffert MI, Caldeira K, Benford G, Criswell DR, Green C, Herzog H, Jain AK, Kheshgi HS, Lackner KS, Lewis JS, Lightfoot HD, Manheimer W, Mankins JC, Mauel ME, Perkins LJ, Schlesinger ME, Volk T, Wigley TML (2002) Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet. Science 298:981–987

    Google Scholar 

  • Hoffmann WA, Jackson RB (2000) Vegetation-climate feedbacks in the conversion of tropical savanna to grassland. Journal of Climate 13:1593–1602

    Google Scholar 

  • Hoffmann WA, Schroeder W, Jackson RB (2002) Positive feedbacks of fire, climate, and vegetation and the conversion of tropical savanna. Geophysical Research Letters 29:2052-doi:10.1029/2002GL015424

    Google Scholar 

  • Hoffmann WA, W Schroeder, Jackson RB (2003) Regional feedbacks among fire, climate, and tropical deforestation. Journal of Geophysical Research 108, No. D23, 4721, doi: 10.1029/2003JD003494

    Google Scholar 

  • Holmes JW, Sinclair JA (1986) Water yield from some afforested catchments in Victoria. Hydrology and Water Resources Symposium: River Basin Management, Griffith University, Brisbane, 25–27 November 1986. Barton, A.C.T., Australia: Institution of Engineers, Australia

    Google Scholar 

  • Houghton RA, Hackler JL, Lawrence KT (1999) The U.S. carbon budget: Contributions from land-use change. Science 285: 574–578

    Google Scholar 

  • Huff FA, Changnon SA (1973) Precipitation modification by major urban areas. Bulletin of the American Meteorological Society 54:1220–1232

    Google Scholar 

  • Huggins DR, Buyanovsky GA, Wagner GH, Brown JR, Darmody RG, Peck TR, Lesoing GW, Vanotti MB, Bundy LG (1998) Soil organic C in the tallgrass prairie-derived region of the corn belt: Effects of long-term crop management. Soil & Tillage Research 47:219–234

    Google Scholar 

  • Hungate BA, Dukes JS, Shaw MR, Luo YQ, Field CB (2003) Nitrogen and climate change. Science 302:1512–1513

    Google Scholar 

  • Huxman TE, Wilcox BP, Breshears DD, Scott RL, Snyder KA, Small EE, Hultine K, Pockman WT, Jackson RB (2005) Ecohydrological implications of woody plant encroachment. Ecology 86:308–319

    Google Scholar 

  • Jackson RB, Schlesinger WH (2004) Curbing the U.S. carbon deficit. Proceedings of the National Academy of Sciences USA 101: 15827–15829

    Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Google Scholar 

  • Jackson RB, Mooney HA, Schulze E-D (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proceedings National Academy of Sciences, USA 94:7362–7366

    Google Scholar 

  • Jackson RB, Moore LA, Hoffmann WH, Pockman WT, Linder CR (1999) Ecosystem rooting depth determined with caves and DNA. Proceedings of the National Academy of Sciences, USA 96: 11387–11392

    Google Scholar 

  • Jackson RB, Schenk HJ, Jobbágy EG, Canadell J, Colello JD, Dickinson RE, Field CB, Friedlingstein P, Heimann M, Hibbard K, Kicklighter DW, Kleidon A, Neilson RP, Parton WJ, Sala OE, Sykesm MT (2000) Belowground consequences of vegetation change and their treatment in models. Ecological Applications 10:470–483

    Google Scholar 

  • Jackson RB, Banner JL, Jobbágy EG, Pockman WT, Wall DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626

    Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10:423–436

    Google Scholar 

  • Jobbágy EG, Jackson RB (2003) Patterns and mechanisms of soil acidification in the conversion of grasslands to forests. Biogeochemistry 64:205–229

    Google Scholar 

  • Jobbágy EG, Jackson RB (2004) Groundwater use and salinization with grassland afforestation. Global Change Biology 10: 1299–1312

    Google Scholar 

  • Kieft TL, White CS, Loftin SR, Aguilar R, Craig JA, Skaar DA (1998) Temporal dynamics in soil carbon and nitrogen resources at a grassland-shrubland ecotone. Ecology 79:671–683

    Google Scholar 

  • Knops JMH, Tilman D (2000) Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology 81:88–89

    Google Scholar 

  • Kucera CL (1960) Forest encroachment in native prairie. Iowa State College Journal of Science 34:635–640

    Google Scholar 

  • Lal R, Follett RF, Kimble J, Cole CV (1999) Managing US cropland to sequester carbon in soil. Journal of Soil and Water Conservation 54:374–381

    Google Scholar 

  • Lawrence MG (2002) Side Effects of Oceanic Iron Fertilization. Science 297: 1993

    Google Scholar 

  • Le Maitre DC, Scott DF, Colvin C (1999) A review of information on interactions between vegetation and groundwater. Water SA 25:137–152

    Google Scholar 

  • Levia DF, Frost EE (2003) A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. Journal of Hydrology 274:1–29

    Google Scholar 

  • Lewandrowski J, Peters M, Jones C, House R, Sperow M, Eve M, Paustian K (2004) USDA Economic Resource Service Report TB-1909

    Google Scholar 

  • Martens DA, Reedy TE, Lewis DT (2003) Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Global Change Biology 10: 65–78

    Google Scholar 

  • McCarl BA, Schneider UA (2001) Greenhouse gas mitigation in U.S. agriculture and forestry. Science 294:2481–2482

    Google Scholar 

  • McCulley RL, Archer S, Boutton TW, Hons FM, Zuberer DA (2005) Soil respiration and nutrient cycling of wooded communities developing in grassland. Ecology 85:2804–2817

    Google Scholar 

  • McNeil BI, Matear RJ, Key RM, Bullister JL, Sarmiento JL (2003) Anthropogenic CO2 uptake by the ocean based on the global chlorofluorocarbon data set. Science 299:235–239

    Google Scholar 

  • Murray BC, McCarl BA, Lee H (2004) Estimating leakage from forest carbon sequestration programs. Land Economics 80: 109–124

    Google Scholar 

  • Ojima D, William O, McConnell J, Moran E, Turner III B, Canadell JG, Lavorel S (2007) The Future Research Challenge: The Global Land Project. In: Canadell J, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. The IGBP Series, Springer-Verlag, Berlin

    Google Scholar 

  • Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan S-M, Sarmiento JL, Goodale CL, Schimel D, Field CB (2001) Consistent Land-and Atmosphere-Based U.S. Carbon Sink Estimates. Science 292:2316–2320

    Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. Forest Ecology and Management 168:241–257

    Google Scholar 

  • Pedroni, L. 2003. Ruling on the “crunch issues” of LULUCF: impacts on project viability. International Journal of Global Energy Issues 20:75–94

    Google Scholar 

  • Petheram C, Walker G, Grayson R, Thierfelder T, Zhang L (2002) Towards a framework for predicting impacts of land use on recharge: 1. A review of recharge studies in Australia. Australian Journal of Soil Resources 40:397–417

    Google Scholar 

  • Pielke RA, Avissar R (1990) Influence of landscape structure on local and regional climate. Landscape Ecology 4:133–155

    Google Scholar 

  • Pielke RA, Lee TJ, Copeland JH, Eastman JL, Ziegler CL, Finley CA (1997) Use of USGS-provided data to improve weather and climate simulations. Ecological Applications 7:3–21

    Google Scholar 

  • Pielke RA, Walko RL, Steyaert LT, Vidale PL, Liston GE, Lyons WA, Chase TN (1999) The influence of anthropogenic landscape changes on weather in south Florida. Monthly Weather Review 127:1663–1673

    Google Scholar 

  • Pimentel D, Berger B, Filiberto D, Newton M, Wolfe B, Karabinakis E, Clark S, Poon E, Abbett E, Nandagopal S (2004) Water resources: agricultural and environmental issues. BioScience 54:909–918

    Google Scholar 

  • Polglase PJ, Paul KI, Khanna PK, Nyakuengama JG, O’Connell AM, Grove TS, Battaglia M (2000) Changes in soil carbon following afforestation or reforestation. National Carbon Accounting System Technical Report No. 20, CSIRO Forestry and Forest Products, Australia

    Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and landuse change: processes and potential. Global Change Biology 6:317–327

    Google Scholar 

  • Rabin RM, Stadler S, Wetzel PJ, Stensrud DJ, Gregory M (1990) Observed effects of landscape variability on convective clouds. Bulletin of the American Meteorological Society 71:272–280

    Google Scholar 

  • Rannik U, Altimir N, Raittila J, Suni T, Gamana A, Hussein T, Teemu Hölttä T, Lassila H, Latokartano M, Lauri A, Natsheh A, Petäjä T, Orjamaa R, Ylä-Mella H, Keronen P, Berninger F, Vesala T, Hari P, Kulmala M (2002) Fluxes of carbon dioxide and water vapour over Scots pine forest and clearing. Agricultural and Forest Meteorology 111:187–202

    Google Scholar 

  • Rao AR, McKerchar AI, Pearce AJ (1979) Modeling and analysis of data from catchment studies of land-use change. Progress in Water Technology 11:579–597

    Google Scholar 

  • Retallack GJ (2001) Cenozoic expansion of grasslands and climatic cooling. Journal of Geology 109:407–426

    Google Scholar 

  • Reynolds JH, Stafford Smith M (eds) (2003) Global Desertification: Do Humans Cause Deserts? Dahlem Workshop Report 88, Dahlem University Press, Berlin, 437 pp

    Google Scholar 

  • Reynolds JF, Maestre FT, Kemp PR, Stafford-Smith DM, Lambin E (2007) Natural and human dimensions of land degradation in drylands: causes and consequences In: Canadell J, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. The IGBP Series, Springer-Verlag, Berlin

    Google Scholar 

  • Robinson M, Gannon B, Schuch M (1991) A comparison of the hydrology of moorland under natural conditions, agricultural use and forestry. Hydrological Sciences Journal 36:565–577

    Google Scholar 

  • Roy S, Avissar R (2002) Impact of land use/land cover change on regional hydrometeorology in Amazonia. Journal of Geophysical Research — Atmospheres 107: DOI 10.1029/2000JD000266

    Google Scholar 

  • Schenk HJ, Jackson RB (2002a) The global biogeography of roots. Ecological Monographs 72:311–328

    Google Scholar 

  • Schenk HJ, Jackson RB (2002b) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology 90:480–494

    Google Scholar 

  • Schimel D, Melillo J, Tian H, McGuire AD, Kicklighter D, Kittel T, Rosenbloom N, Running S, Thornton P, Ojima D, Parton W, Kelly R, Sykes M, Neilson R, Rizzo B (2000) Contribution of Increasing CO2 and Climate to Carbon Storage by Ecosystems in the United States. Science 287:2004–2006

    Google Scholar 

  • Schlesinger WH, Pilmanis AM (1998) Plant-soil interactions in deserts. Biogeochemistry 42:169–187

    Google Scholar 

  • Scott DF, Lesch W (1997) Streamflow responses to afforestation with Eucalyptus grandis and Pinus patula and to felling in the Mokobulaan experimental catchments, South Africa. Journal of Hydrology 199:360–377

    Google Scholar 

  • Seyfried MS, Schwinning S, Walvoord MA, Pockman WT, Newman BD, Jackson RB, Phillips FM (2005) Ecohydrological control of deep drainage in semiarid regions. Ecology 86:277–287

    Google Scholar 

  • Skold MD (1989) Cropland retirement policies and their effects on land use in the Great Plains. Journal of Production Agriculture 2:197–201

    Google Scholar 

  • Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiology 47:380–384

    Google Scholar 

  • Smith DL, Johnson LC (2003) Expansion of Juniperus virginiana L. in the Great Plains: Changes in soil organic carbon dynamics. Global Biogeochemical Cycles 17: 1062

    Google Scholar 

  • Tilman D, Reich PB, Phillips H, Menton M, Patel A, Vos E, Peterson D, Knops J (2000) Fire suppression and ecosystem carbon storage. Ecology 81:2680–2685

    Google Scholar 

  • Tsuda A, Takeda S, Saito H, Nishioka J, Nojiri Y, Kudo I, Kiyosawa H, Shiomoto A, Imai K, Ono T, Shimamoto A, Tsumune D, Yoshimura T, Aono T, Hinuma A, Kinugasa M, Suzuki K, Sohrin Y, Noiri Y, Tani H, Deguchi Y, Tsurushima N, Ogawa H, Fukami K, Kuma K, Saino T (2003) A Mesoscale Iron Enrichment in the Western Subarctic Pacific Induces a Large Centric Diatom Bloom. Science 300:958–961

    Google Scholar 

  • Van Auken OW (2000) Shrub invasions of North American semiarid grasslands. Annual Review of Ecology and Systematics 31:197–215

    Google Scholar 

  • Vejre H, Ingerslev M, Raulund-Rasmussen K (2001) Fertilization of Danish forests: a review of experiments. Scandinavian Journal of Forest Research 16:502–513

    Google Scholar 

  • Vertessy RA (1999) The impacts of forestry on streamflows: A review. In: Croke J, Lane P, (eds) Forest management for water quality and quantity. Proceedings of the Second Forest Erosion Workshop, May 1999, Warburton, Australia. Report 99/6. Cooperative Research Centre for Catchment Hydrology, CSIRO Land and Water, Canberra, Australia, pp 69–76

    Google Scholar 

  • Vertessy RA (2001) Impacts of plantation forestry on catchment runoff. In: Nambiar EKS, Brown AG (eds) Plantations, farm forestry, and water. Water and salinity issues in agroforestry no. 7, RIRDC publication no. 01/20. RIRDC, Kingston, Australia, pp 9–19

    Google Scholar 

  • Weaver C, Roy S, Avissar R (2002) Sensitivity of simulated mesoscale atmospheric circulations resulting from landscape heterogeneity to aspects of model configuration. Journal of Geophysical Research-Atmospheres 107: DOI 10.1029/2001JD000376

    Google Scholar 

  • Werth D, Avissar R (2002) The local and global effects of Amazon deforestation. Journal of Geophysical Research — Atmospheres 107(D20): Art. No. 8087

    Google Scholar 

  • West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: A global analysis. Soil Science Society of America Journal 66:1930–1946

    Google Scholar 

  • Wilcox BP (2002) Shrub control and streamflow on rangelands: A process based viewpoint. Journal of Range Management 55: 318–326

    Google Scholar 

  • Xue Y, Fennessy MJ, Sellers PJ (1996) Impact of vegetation properties on U.S. summer weather prediction. Journal of Geophysical Research — Atmospheres 101:7419–7430

    Google Scholar 

  • Zhang L, Dawes WR, Walker GR (1999) Predicting the effect of vegetation changes on catchment average water balance. Cooperative Research Centre for Catchment Hydrology, CSIRO Land and Water

    Google Scholar 

  • Zhang L, Dawes WR, Walker GR (2001) Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research 37:701–708

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jackson, R.B., Farley, K.A., Hoffmann, W.A., Jobbágy, E.G., McCulley, R.L. (2007). Carbon and Water Tradeoffs in Conversions to Forests and Shrublands. In: Canadell, J.G., Pataki, D.E., Pitelka, L.F. (eds) Terrestrial Ecosystems in a Changing World. Global Change — The IGBP Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32730-1_19

Download citation

Publish with us

Policies and ethics