Skip to main content

Dynamic Global Vegetation Modeling: Quantifying Terrestrial Ecosystem Responses to Large-Scale Environmental Change

  • Chapter
Terrestrial Ecosystems in a Changing World

15.7 Summary and Conclusions

DGVMs exploit the power of modern computers and computational methods to yield a predictive description of land ecosystem processes that takes account of knowledge previously developed through long histories of separate disciplinary approaches to the study of the biosphere. The degree of interaction between the different scientific approaches still falls far short of optimal; thus, DGVM developers have a responsibility to be aware of progress in several disciplines in order to ensure that their models remain state-of-the-art. We have presented a series of case studies of the evaluation of DGVMs that demonstrate the predictive capability that current models have achieved. Nevertheless, there are plenty of unresolved issues — differences among models that are not well understood, important processes that are omitted or treated simplistically by some or all models, and sets of observations that are not satisfactorily reproduced by current models. More comprehensive “benchmarking” of DGVMs against multiple data sets is required and would be most effectively carried out through an international consortium, so as to avoid duplicating the large amount of work involved in selecting and processing data sets and model experiments. We have also presented a series of case studies that illustrate the power of DGVMs, even with their known limitations, in explaining a remarkable variety of Earth System phenomena and in addressing contemporary issues related to climate and land-use change. These case studies encourage us to believe that the continued development of DGVMs is a worthwhile enterprise. Finally, new directions in Earth System Science point to a range of aspects in which DGVMs could be improved so as to take account of recently acquired knowledge, such as experimental work on whole-ecosystem responses to environmental modification and new understanding of the functional basis of plant traits; complemented by an effort to represent semi-natural and agricultural ecosystems and the impacts of different management practices on these ecosystems; and extended to include processes such as trace-gas emissions, which are important in order to understand the functional role of the terrestrial biosphere in the Earth System. Together, these potential developments add up to an ambitious research program, requiring the economies of scale that only an international collaborative effort can provide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcamo J (1994) IMAGE 2.0: Integrated Modeling of Global Climate Change. Kluwer Academic Press, Dordrecht, Boston, pp 314

    Google Scholar 

  • Allen TFH, Hoekstra TW (1990) The confusion between scale-defined levels and conventional levels of organization in ecology. Journal of Vegetation Science 1:5–12

    Google Scholar 

  • Amthor JS, Chen JM, Clein JS, Frolking SE, Goulden ML, Grant RF, Kimball A, King W, McGuire AD, Nikolov NT, Potter CS, Wang S, Wofsy SC, (2001) Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: Inter-model comparisons and relations to field measurements. Journal of Geophysical Research, 106: D24 33623–33648

    Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biochemical Cycles 15:955–966

    Google Scholar 

  • Angert A, Biraud S, Bonfils C, Buermann W, Fung I (2004) CO2 seasonality indicates origins of post-Pinatubo sink. Geophysical Research Letters 31: L11103, doi:10.1029/2004GL019760

    Google Scholar 

  • Arora VK, Boer GJ (2005) A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biology 11:39–5

    Google Scholar 

  • Arora VK, Boer GJ (in press) Fire as an interactive component of dynamic vegetation models. Journal of Geophysical Research — Biogeosciences

    Google Scholar 

  • Aumont O, Maier-Reimer E, Blain S, Pondaven P (2003) An ecosystem model of the global ocean including Fe, Si, P co-limitations. Global Biochemical Cycles 17: doi:10.1029/2001GB001745

    Google Scholar 

  • Bachelet D, Lenihan JM, Daly C, Neilson RP, Ojima DS, Parton WJ (2001) MC1: A dynamic vegetation model for estimating the distribution of vegetation and associated ecosystem fluxes of carbon, nutrients and water. USDA Forest Service General Technical Report, PNW-GTR-508:1–95

    Google Scholar 

  • Bachelet D, Neilson RP, Hickler T, Drapek RJ, Lenihan JM, Sykes MT, Smith B, Sitch S, Thonicke K (2003) Simulating past and future dynamics of natural ecosystems in the United States. Global Biochemical Cycles 17: 1045 doi:1010.1029/2001GB001508

    Google Scholar 

  • Baldocchi D (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology 9:479–492

    Google Scholar 

  • Baldocchi D, Gu LH (2002) Fluxnet 2000 synthesis — Foreword. Agricultural and Forest Meteorology 113:1–2

    Google Scholar 

  • Barboni D, Harrison SP, Bartlein PJ, Jalut G, New M, Prentice IC, Sanchez-Goñi M-F, Spessa A, Davis B, Stevenson AC (2004) Relationships between plant traits and climate in the Mediterranean region: A pollen data analysis. J Vegetat Sci 15:635–646

    Google Scholar 

  • Beerling DJ, Woodward FI (2001) Vegetation and the Terrestrial Carbon Cycle: Modelling the first 400 Million Years. Cambridge University Press

    Google Scholar 

  • Blackford JC, Burkill PH (2002) Planktonic community structure and carbon cycling in the Arabian Sea as a result of monsoonal forcing: the application of a generic model. Journal of Marine Systems 36:239–267

    Google Scholar 

  • Blackford JC, Allen JI, Gilbert FJ (2004) Ecosystem dynamics at six contrasting sites: a generic modeling study. Journal of Marine Systems 52:191–215

    Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718

    Google Scholar 

  • Bondeau A, Kicklighter DW, Kaduk J (1999) Comparing global models of terrestrial net primary productivity (NPP): importance of vegetation structure on seasonal NPP estimates. Global Change Biology 5:35–45

    Google Scholar 

  • Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Müller C, Reichstein M, Smith B (in press) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology

    Google Scholar 

  • Bopp L, Le Quéré C, Heimann M, Manning AC, Monfray P (2002) Climate-induced oceanic oxygen fluxes: Implications for the contemporary carbon budget. Global Biogeochemical Cycles 16: doi:10.1029/2001GB001445

    Google Scholar 

  • Botkin DB, Janak JF, Wallis JR (1972) Some ecological consequences of a computer model of forest growth. J Ecol 60:849–872

    Google Scholar 

  • Botta A, Foley JA (2002) Effects of climate variability and disturbances on the Amazonian terrestrial ecosystems dynamics. Global Biogeochemical Cycles 16(4): doi:10.1029/2000GB001338

    Google Scholar 

  • Bousquet P, Peylin P, Ciais P, Le Quéré C, Friedlingstein P, Tans P (2000) Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290:1342–1346

    Google Scholar 

  • Box EO (1981) Predicting physiognomic vegetation types with climate variables. Vegetatio 45:127–139

    Google Scholar 

  • Broecker WS, Lynch-Stieglitz J, Clark E, Hadjas I, Bonani G (2001) What caused the atmosphere’s CO2 content to rise during the last 8000 years? Geochem. Geosyst. 2: doi:2001GC00177

    Google Scholar 

  • Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki A, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model Global Biogeochemical Cycles 16: 1139; doi:10.1029/2001GB001662

    Google Scholar 

  • Bugmann H (1996) A simplified forest model to study species composition along climate gradients. Ecology 77:2055–2074

    Google Scholar 

  • Bugmann H, Solomon AM (2000) Explaining forest composition and biomass across multiple biogeographical regions. Ecological Applications 10:95–114

    Google Scholar 

  • Cao M, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393:249–252

    Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrient during four million years of ecosystem development. Nature 397:491–497

    Google Scholar 

  • Clark JS, Fastie C, Hurtt G, Jackson ST, Johnson C, King GA, Lewis M, Lynch J, Pacala S, Prentice C, Schupp EW, Webb T, Wyckoff (1998) Reid’s paradox of rapid plant migration — Dispersal theory and interpretation of paleoecological records. Bioscience 48:13–24

    Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology 54:107–136

    Google Scholar 

  • Collatz GJ, Ribas-Carbo M, Berry JA (1992) Coupled photosynthesis stomatal conductance model for leaves of C4 plants. Australian Journal of Plant Physiology 19:519–538

    Google Scholar 

  • Comins HN, McMurtrie RE (1993) Long-term response of nutrient-limited forests to CO2-enrichment; equilibrium behaviour of plant-soil models. Ecological Applications 3:666–681

    Google Scholar 

  • Cowan IR (1977) Stomatal behaviour and environment. Advances in Botanical Research 4:117–228

    Google Scholar 

  • Cowling SA (1999) Simulated effects of low atmospheric CO2 on structure and composition of North American vegetation at the Last Glacial Maximum. Global Ecology and Biogeography 8:81–93

    Google Scholar 

  • Cox PM (2001) Description of the TRIFFID dynamic global vegetation model, Tech. Note 24, Hadley Centre, Bracknell, UK, pp 16

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Google Scholar 

  • Cramer W, Kicklighter DW, Bondeau A, Moore B, Churkina C, Nemry B, Ruimy A, AL S (1999) Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Global Change Biology 5:1–15

    Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice C, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology 7:357–374

    Google Scholar 

  • Cramer W, Bondeau A, Schaphoff S, Lucht W, Smith B, Sitch S (2004) Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359:331–343

    Google Scholar 

  • Daly C, Bachelet D, Lenihan JM, Neilson RP, Parton W, Ojima D (2000) Dynamic simulation of tree-grass interactions for global change studies. Ecological Applications 10:449–469

    Google Scholar 

  • Dargaville RJ, Heimann M, McGuire AD, Prentice IC, Kicklighter DW, Joos F, Clein JS, Esser G, Foley J, Kaplan J, Meier RA, Melillo JM, Moore III B, Ramankutty N, Reichenau T, Schloss A, Sitch S, Tian H, Williams LJ, Wittenberg U (2002) Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: Results from transient simulations considering increasing CO2, climate, and land-use effects. Global Biogeochemical Cycles 16: 1092, doi:1010.1029/2001GB001426

    Google Scholar 

  • DeFries RS, Hansen MC, Townsend JRG, Janetos AC, Loveland TR (2000) A new global 1-km dataset of percentage tree cover derived from remote sensing. Global Change Biology 6:247–254

    Google Scholar 

  • Delire C, Levis S, Bonan G, Foley JA, Coe M, Vavrus S (2002) Comparison of the climate simulated by the CCM3 coupled to two different land-surface models Climate Dynamics 19:657–669

    Google Scholar 

  • DeLucia EH, Hamilton JG, Naidu SL, Thomas RB, Andrews JA, Finzi A, Lavine M, Matamala R, Mohan JE, Hendrey GR, Schlesinger WH (1999) Net primary production of a forest ecosystem with experimental CO2 enrichment. Science 284:1177–1179

    Google Scholar 

  • Denning AS, Holzer M, Gurney KR, Heimann M, Law RM, Rayner PJ, Fung IY, Fan S, Taguchi S, Friedlingstein P, Balkanski Y, Maiss M, Levin I (1999) Three-dimensional transport and concentration of SF6: A model intercomparison study (Transcom 2). Tellus 51B: 266–297

    Google Scholar 

  • Dewar RC (1996) The correlation between plant growth and intercepted radiation: an interpretation in terms of optimal plant nitrogen content. Annuals of Botany 78:125–136

    Google Scholar 

  • Díaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Vegetat Sci 8:463–474

    Google Scholar 

  • Díaz S, Cabido M, Casanoves F (1999a) Functional implications of trait-environment linkages in plant communities. In: Weiher E, Keddy P (eds) Ecological assembly rules — Perspectives, advances, retreats. Cambridge University Press, Cambridge, pp 338–362

    Google Scholar 

  • Díaz S, Cabido M, Zak M, Martínez Carretero E, Araníbar J (1999b) Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina. Journal of Vegetation Science 10:651–660

    Google Scholar 

  • Díaz S, McIntyre S, Lavorel S, Pausas JG (2002) Does hairiness matter in Harare? Resolving controversy in global comparisons of plant trait responses to ecosystem disturbance. New Phytologist 154:7–9

    Google Scholar 

  • Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Marti G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Diez P, Funes G, Hamzehee B, Khoshnevi M, Perez-Harguindeguy N, Perez-Rontome MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martinez M, Romo-Diez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science 15:295–304

    Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-Atmosphere Transfer Scheme (BATS) Version 1E as coupled to the NCAR Community Climate Model, Tech. Note NCAR/TN-383+STR, Natl. Cent. For Atmos. Res., Boulder, Colorado, pp 72

    Google Scholar 

  • Dolman AJ, Schulze ED, Valentini R (2003) Analyzing carbon flux measurements. Science 301(5635):916–916

    Google Scholar 

  • Dufresne JL, Friedlingstein P, Berthelot M, Bopp L, Ciais P, Fairhead L, Le Treut H, Monfray P (2002) On the magnitude of positive feedback between future climate change and the carbon cycle. Geophysical Research Letters 29:43.41–43.44

    Google Scholar 

  • Emanuel WR, Shugart HH, Stevenson MP (1985). Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climatic Change 7:29–43

    Google Scholar 

  • Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Gudmundsson J, Hollinger D, Kowalski AS, Katul G, Law BE, Malhi Y, Meyers T, Monson RK, Munger JW, Oechel W, Paw UKT, Pilegaard K, Rannik U, Rebmann C, Suyker A, Valentini R, Wilson K, Wofsy S (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology 113:53–74

    Google Scholar 

  • Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P (1998) A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282:442–446

    Google Scholar 

  • Farquhar GD, van Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Google Scholar 

  • Field CB, Chapin FS, Matson PA, Mooney HA (1992) Responses of terrestrial ecosystems to the changing atmosphere: a resource based approach. Annual Review of Ecology and Systematics 23:201–235

    Google Scholar 

  • Field CB, Randerson JT, Malmström CM (1995) Global net primary production: combining ecology and remote sensing. Remote Sensing of Environment 51:74–88

    Google Scholar 

  • Field CB, Raupach MR, Victoria R (2004) The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World. In: Field CB, Raupach MR (eds) The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World. Island Press, Washington, D.C., pp 1–13

    Google Scholar 

  • Finnegan JJ, Raupach MR (1987) Transfer processes in plant canopies in relation to stomatal characteristics. In: Zeiger, E. Farquhar GD, Cowan IR (eds) Stomatal Function, Stanford University Press, Stanford, pp 385–429

    Google Scholar 

  • Flückiger J, Monnin E, Stauffer B, Schwander J, Stocker TF, Chappellaz J, Raynaud D, Barnola J-M (2002) High-resolution Holocene N2O ice core record and its relationship with CH4 and CO2. Global Biogeochemical Cycles 16: doi:10.1029/2001GB001417

    Google Scholar 

  • Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles 10:603–628

    Google Scholar 

  • Foley JA, Levis S, Prentice IC, Pollard D, Thompson SL (1998) Coupling dynamic models of climate and vegetation. Global Change Biology 4:561–579

    Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz CJ, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Google Scholar 

  • Friedlingstein P, Dufresne J-L, Cox PM, Rayner P (2003)How positive is the feedback between climate change and the carbon cycle? Tellus B55 692–700

    Google Scholar 

  • Friend AD, Stevens AK, Knox RG, Cannell MGR (1997) A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecological Modelling 95:249–287

    Google Scholar 

  • Fulton MR, Prentice IC (1997) Edaphic controls on the boreonemoral forest mosaic. Oikos 78:291–298

    Google Scholar 

  • Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004) Terrestrial vegetation and water balance — hydrological evaluation of a dynamic global vegetation model. J Hydrol 286:249–270

    Google Scholar 

  • Gitay H, Noble IR (1997) What are functional types and how should we seek them? In: Smith TM, Shugart HH, Woodward FI (eds) Plant functional types: their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge, pp 3–19

    Google Scholar 

  • Gordon WS, Famiglietti JS (2004) Response of the water balance to climate change in the United States over the 20th and 21st centuries: Results from the VEMAP Phase 2 model intercomparisons, Global Biogeochemical Cycles 18: GB1030, doi:10.1029/2003GB002098

    Google Scholar 

  • Gordon WS, Famiglietti JS, Fowler NA, Kittel TGF, Hibbard KA (2004) Validation of simulated runoff from six terrestrial ecosystem models: Results from VEMAP. Ecological Applications 14:527–545

    Google Scholar 

  • Gu LH, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research-Atmospheres 107: ACL 2.1–2.23

    Google Scholar 

  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Seinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. Journal of Geophysical Research 100:8873–8892

    Google Scholar 

  • Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Fan S, Fung IY, Gloor M, Heimann M, Higuchi K, John J, Kowalczyki E, Maki T, Maksyutov S, Peylin P, Prather M, Pak BC, Sarmiento J, Taguchi S, Takahashi T, Yuen CW (2003) Transcom 3 CO2 Inversion Intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus 55B:555–579

    Google Scholar 

  • Gurney KR, Law RM, Denning AS, Rayner PJ, Pak B, TransCom3 L2 modelers (2004) TransCom3 Inversion Intercomparison: Control results for the estimation of seasonal carbon sources and sinks. Global Biogeochemical Cycles 18: GB1010, doi:10.1029/2003GB002111

    Google Scholar 

  • Gurvich DE, Díaz S, Falczuk V, Perez-Harguindeguy N, Cabido M, Thorpe PC (2002) Foliar resistance to simulated extreme temperature events in contrasting plant functional and chorological types. Global Change Biology 8:1139–1145

    Google Scholar 

  • Hamilton JG, George K, DeLucia EH, Naidu SL, Finzi AC, Schlesinger WH (2002) Forest carbon balance under elevated CO2. Oecologia 131:250–260

    Google Scholar 

  • Harrison SP, Prentice IC (2003) Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Global Change Biology 9:983–1004

    Google Scholar 

  • Harrison SP, Prentice IC, Barboni D, Kohfeld KE, Ni J, Sutra J-P (submitted) Towards a global plant functional type classification for ecosystem modelling, palaeoecology and climate impacts research. Journal of Vegetation Science

    Google Scholar 

  • Haxeltine A, Prentice IC (1996a) BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles 10:693–709

    Google Scholar 

  • Haxeltine A, Prentice IC (1996b) A general model for the light-use efficiency of primary production. Functional Ecology 10:551–561

    Google Scholar 

  • Haxeltine A, Prentice IC, Creswell ID (1996) A coupled carbon and water flux model to predict vegetation structure. Journal of Vegetation Science 7:651–666

    Google Scholar 

  • Heimann M, Esser G, Haxeltine A, Kaduk J, Kicklighter DW, Knorr W, Kohlmaier GH, McGuire AD, Melillo J, III B M, Otto RD, Prentice IC, Sauf W, Schloss A, Sitch S, Wittenberg U, Würth G (1998) Evaluation of terrestrial carbon cycle models through simulations of the seasonal cycle of atmospheric CO2: first results of a model intercomparison study. Global Biogeochemical Cycles 12:1–24

    Google Scholar 

  • Hendry GR, Ellsworth DS, Lewin KF, Nagy J (1999) A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Global Change Biology 5: doi: 10.1046/j.1365-2486.1999.00228.x

    Google Scholar 

  • Hicke JA, Asner GP, Randerson JT, Tucker C, Los S, Birdsey R, Jenkins JC, Field C (2002) Trends in North American net primary productivity derived from satellite observations, 1982–1998. Global Biogeochemical Cycles 16: doi:10.1029/2001GB001550

    Google Scholar 

  • Hickler T, Prentice IC, Smith B, Sykes MT (2004a) Simulating the effects of elevated CO2 on productivity at the Duke Forest FACE experiment: a test of the dynamic global vegetation model LPJ. In: Hickler T, Towards an integrated ecology through mechanistic modelling of ecosystem structure and functioning. Meddelanden från Lunds Universitets Geografiska Institution. Avhandlingar: 153

    Google Scholar 

  • Hickler T, Smith B, Sykes MT, Davis M, Sugita S, Walker K (2004b) Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA. Ecology 85:519–530

    Google Scholar 

  • Higgins SI, Clark JS, Nathan R, Hovestadt T, Schurr F, Fragoso JMV, Aguiar MR, Ribbens E, Lavorel S (2003) Forecasting plant migration rates: managing uncertainty for risk assessment. Journal of Ecology 91:341–347

    Google Scholar 

  • Holdridge LR (1947) Determination of world plant formations from simple climatic data. Science 105:367–368

    Google Scholar 

  • Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus 55B:378–390

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (Eds.) (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, UK

    Google Scholar 

  • House JI, Prentice IC, Ramankutty N, Houghton RA, Heimann M (2003) Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks. Tellus 55:345–363

    Google Scholar 

  • Hungate BA, Dukes JS, Shaw MB, Luo Y, Field CB (2003) Nitrogen and Climate Change. Science 302:1512–1513

    Google Scholar 

  • Indermühle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398:121–126

    Google Scholar 

  • Jarvis PG (1976) The interpretation of the variances in leaf water potential and stomatal conductance found in canopies in the field. Phil. Trans. Roy. Soc. Lond. B273:593–610

    Google Scholar 

  • Jones CD, Cox PM (2001) Modeling the volcanic signal in the atmospheric CO2 record. Global Biogeochemical Cycles 15:453–465

    Google Scholar 

  • Jones CD, Cox PM, Essery RLH, Roberts DL, Woodage MJ (2003) Strong carbon cycle feedbacks in a climate model with interactive CO2 and sulphate aerosols. Geophysical Research Letters 30:1479, doi:1410.1029/2003GL016867

    Google Scholar 

  • Joos F, Prentice IC, Sitch S, Meyer R, Hooss G, Plattner G-K, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochemical Cycles 15:891–907

    Google Scholar 

  • Joos F, Gerber S, Prentice IC, Otto-Bliesner BL, Valdes PJ (2004) Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Global Biogeochemical Cycles 18: GB2002, doi: 2010.1029/2003GB002156

    Google Scholar 

  • Kaduk J, Heimann M (1996) A prognostic phenology model for global terrestrial carbon cycle models, Climate Research 6:1–19

    Google Scholar 

  • Kaminski T, Heimann M (2001) Inverse modeling of atmospheric carbon dioxide fluxes. Science 294:259a

    Google Scholar 

  • Kaplan JO (2002) Wetlands at the Last Glacial Maximum: Distribution and methane emissions. Geophysical Research Letters 29: doi: 10.1029/2001GL013366

    Google Scholar 

  • Kaplan JO, Prentice IC, Knorr W, Valdes PJ (2002) Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum. Geophysical Research Letters 29:2074, DOI: 2010.1029/2002GL015230

    Google Scholar 

  • Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin AV (2003) Climate change and arctic ecosystems II: Modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research 108:8171, doi: 8110.1029/2002JD002559

    Google Scholar 

  • Kicklighter DW, Bruno M, Donges S, Esser G, Heimann M, Helfrich J, Ift F, Joos F, Kaduk J, Kohlmaier GH, McGuire AD, Melillo JM, Meyer R, Moore B, Nadler A, Prentice IC, Sauf W, Schloss AL, Sitch S, Wittenberg U, Wurth G (1999) A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrial biosphere models. Tellus Series B-Chemical and Physical Meteorology 51:343–366

    Google Scholar 

  • Klein Goldewijk K (2001) Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles 15:417–433

    Google Scholar 

  • Knorr W (2000) Annual and interannual CO2 exchanges of the terrestrial biosphere: process-based simulations and uncertainties. Global Ecology and Biogeography 9:225–252

    Google Scholar 

  • Knorr W, Heimann M (1995) Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model. Tellus Series B-Chemical and Physical Meteorology 47:471–489

    Google Scholar 

  • Knorr W, Heimann M (2001) Uncertainties in global terrestrial biosphere modeling. Part II: global constraints for a process-based vegetation model. Global Biogeochemical Cycles 15:227–246

    Google Scholar 

  • Köppen W (1931) Grundriss der Klimakunde. Walter de Gruyter, Berlin

    Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles 19: GB1015, doi:10.1029/2003GB002199

    Google Scholar 

  • Kucharik CJ, Brye KR (2003) Integrated BIosphere Simulator (IBIS) yield and nitrate loss predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer. J Environ Qual 32:247–268

    Google Scholar 

  • Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramankutty N, Norman JM, Gower ST (2000) Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure. Global Biogeochemical Cycles 14:795–825

    Google Scholar 

  • Lavorel S, Cramer W (1999) Plant functional response to land use and natural disturbance. Journal of Vegetation Science 10:604–732

    Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16:545–556

    Google Scholar 

  • Lavorel S, McIntyre S, Landsberg J, Forbes TDA (1997) Plant functional classifications: from general groups to specific groups based on response to disturbance. Tree 12:474–478

    Google Scholar 

  • Lavorel S, Díaz S, Cornelissen H, Garnier E, Harrison SP, McIntyre S, Pausas JG, Pérez-Harguindeguy N, Urcelay C (2007) Plant functional types: are we getting any closer to the Holy Grail? In: Canadell J, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. IGBP Series, Springer-Verlag, Heidelberg, this volume

    Google Scholar 

  • Law R, Chen YH, Gurney KR, Rayner P, Denning AS, TransCom3 modelers (2003) TransCom3 CO2 inversion intercomparison: 2. Sensitivity of annual mean results to data choices. Tellus 55B:512–521

    Google Scholar 

  • Le Quéré C, Harrison SP, Prentice IC, Buitenhuis ET, Aumont O, Bopp L, Claustre H, Cotrim da Cunha L, Geider R, Giraud X, Klaas C, Kohfeld KE, Legendre L, Manizza M, Platt T, Rivkin R, Sathyendranath S, Uitz J, Watson AJ, Wolf-Gladrow D (in press) Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biology

    Google Scholar 

  • Lenihan JM, Daly C, Bachelet D, Neilson RP (1998) Simulating broad-scale fire severity in a dynamic global vegetation model. Northwest Science 72:91–103

    Google Scholar 

  • Lieth H (1975) Modeling the Primary Productivity of the World. In: Lieth H, Whittaker RH (eds) Primary Productivity of the Biosphere, Springer-Verlag, Berlin, pp 237–263

    Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide. Annual Review of Plant Biology 55:591–628

    Google Scholar 

  • Lucht W, Prentice IC, Myneni RB, Sitch S, Friedlingstein P, Cramer W, Bousquet P, Buermann W, Smith B (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296:1687–1689

    Google Scholar 

  • MA (Millenium Ecosystem Assessment) (2003) Ecosystems and Human Well-being: A Framework for Assessment. Island Press, Washington DC

    Google Scholar 

  • McGuire AD, Sitch S, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier RA, Melillo JM, Moore III B, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ, Wittenberg U (2001) Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochemical Cycles 15:183–206

    Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Google Scholar 

  • Monteith JL (1995) Accommodation between transpiring vegetation and the convective boundary layer. J Hydrol 166:251–263

    Google Scholar 

  • Moorcroft PR, Hurtt GC, Pacala. SW (2001) A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecological Monographs 71:557–585

    Google Scholar 

  • Morales P, Sykes MT, Prentice IC, Smith P, Smith B, Bugmann H, Zierl B, Friedlingstein P, Viovy N, Sabate S, Sanchez A, Pla E, Gracia CA, Sitch S, Arneth A, Ogee J (submitted) Comparing and evaluating process-baserd ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology

    Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Google Scholar 

  • Nabuurs GJ, Schelhas MJ, Mohren GMJ, Field CB (2003) Temporal evolution of the European Forest sector carbon sink 1950–1999. Global Change Biology 9:152–160

    Google Scholar 

  • Neilson RP (1995) A model for predicting continental scale vegetation distribution and water balance. Ecological Applications 5:362–385

    Google Scholar 

  • Neilson RP, Marks D (1994) A global perspective of regional vegetation and hydrologic sensitivities and risks from climatic change. Journal of Vegetation Science 5:715–730

    Google Scholar 

  • Neilson RP, Running SW (1996) Global dynamic vegetation modellingg: coupling biogeochemistry and biogeography models. pp 451–465 in Walker B, Steffen W, (eds.) Global Change and Terrestrial Ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Neilson RP, King GA, Koerper G (1992) Toward a rule based biome model. Landscape Ecology 7:27–43

    Google Scholar 

  • Nemani R, Running SW (1996) Implementation of a hierarchical global vegetation classification in ecosystem function models. Journal of Vegetation Science 7:337–346

    Google Scholar 

  • Nemani R, White M, Thornton P, Nishida K, Reddy S, Jenkins J, Running S (2002) Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States. Geophysical Research Letters 29: Art. No. 1468

    Google Scholar 

  • New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. Journal of Climate 13:2217–2238

    Google Scholar 

  • Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell and Environment 22:683–714

    Google Scholar 

  • Notaro M, Liu Z, Gallimore R, Vavrus SJ, Kutzbach JE, Prentice IC, Jacob RL (2004) Simulated and observed pre-Industrial to modern vegetation and climate changes. Journal of Climate 18:3650–3671

    Google Scholar 

  • Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 — do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist 162:253–280

    Google Scholar 

  • Overpeck JT, Whitlock C, Huntley B (2003) Terrestrial biosphere dynamics in the climate system: past and future. In: Alverson K, Bradley R, Pedersen T (eds) Paleoclimate, Global Change and the Future (IGBP Synthesis Volume), Springer-Verlag, Berlin, pp 81–111

    Google Scholar 

  • Pacala SW, Canham CD, Saponara J, Silander Jr. JA (1993) Forest models defined by field measurements: I. The design of a northeastern forest simulator. Canadian Journal of Forest Research 23:1980–1998

    Google Scholar 

  • Pacala SW, Canham CD, Saponara J, Silander Jr. JA, Kobe RK, Ribens E (1996) Forest models defined by field measurements: estimation, error analysis and dynamics. Ecological Monographs 66:1–43

    Google Scholar 

  • Pan Y, McGuire AD, Melillo JM, Kicklighter DW, Sitch S, Prentice IC (2002) A biogeochemistry-based dynamic vegetation model and its application along a moisture gradient in the continental United States. Journal of Vegetation Science 13:369–382

    Google Scholar 

  • Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut J-C, Seastedt T, Garcia Moya E, Apinan Kamnalrut, Kinyamario JI (1993) Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles 7:785–809

    Google Scholar 

  • Pastor J, Post WM (1985) Development of a linked forest productivity-soil process model. ORNL/TM-9519. Oak Ridge, Tennessee

    Google Scholar 

  • Peylin P, Bousquet P, Le Quéré C, Sitch S, Friedlingstein P, McKinley G, Gruber N, Rayner P, Ciais P, (2005) Multiple constraints on regional CO2 flux variations over land and oceans. Global Biogeochemical Cycles 19: GB1011, doi:10.1029/2003GB002214

    Google Scholar 

  • Pitelka LF, Plant Migration Workshop Group (1997) Plant migration and climate change. American Scientist 85:464–473

    Google Scholar 

  • Potter CS, Klooster SA (1999) Dynamic global vegetation modeling for prediction of plant functional types and biogenic trace gas fluxes. Global Ecology and Biogeography 8:473–488

    Google Scholar 

  • Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster S (1993) Terrestrial Ecosystem Production — A Process Model-Based On Global Satellite And Surface Data Global Biogeochemical Cycles 7:811–841

    Google Scholar 

  • Potter CS, Wang S, Nikolov NT, McGuire AD, Liu J, King AW, Kimball JS, Grant RF, Frolking SE, Clein JS, Chen JM, Amthor JS (2001) Comparison of boreal ecosystem model sensitivity to variability in climate and forest site parameters. Journal of Geophysical Research 106: D24, 33, 671 (2000JD000224)

    Google Scholar 

  • Prentice IC (2001) Controls on the primary productivity of terrestrial ecosystems. In: Geider RJ, DeLucia EH, Falkowski PG, Finzi A, Grime JP, Grace J, Kana TM, LaRoche J, Long SP, Osborne BA, Platt T, Prentice IC, Raven JA, Schlesinger WH, Smetacek V, Stuart V, Sathyendranath S, Thomas RB, Vogelmann TC, Williams P, Woodward FI (2001) Primary productivity of planet Earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Global Change Biology 7:849–882

    Google Scholar 

  • Prentice IC, Leemans R (1990) Pattern and process and the dynamics of forest structure: a simulation approach. Journal of Ecology 78:340–355

    Google Scholar 

  • Prentice IC, Raynaud D (2001) Paleogeochemistry, in Global Biogeochemiscal Cycles in the Climate System (eds. Schulze ED, Heinmann M, Holland E. et al.), San Diego: Academic Press, 2001, 87–94

    Google Scholar 

  • Prentice IC, Solomon AM (1991) Vegetation models and global change. In: Bradley RS (ed.) Global changes of the past: Papers arising from the 1989 OIES Global Change Institute; Snowmass, Colorado, 24. July-4. August 1989. UCAR, Office for Interdisciplinary Earth Studies, Boulder, Colorado. 365–384

    Google Scholar 

  • Prentice IC, van Tongeren O, de Smidt JT (1987) Simulation of heathland vegetation dynamics. Journal of Ecology 75:203–219

    Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography 19:117–134

    Google Scholar 

  • Prentice IC, Sykes MT, Cramer W (1993). A simulation model for the transient effects of climate change on forest landscapes. Ecological Modelling 65:51–70

    Google Scholar 

  • Prentice IC, Heimann M, Sitch S (2000) The carbon balance of the terrestrial biosphere: Ecosystem models and atmospheric observations Ecological Applications 10(6):1553–1573

    Google Scholar 

  • Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Quéré C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds.) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 185–225

    Google Scholar 

  • Prentice IC, Le Quéré C, Buitenhuis ET, House JI, Klaas C, Knorr W (2004) Biosphere dynamics: questions for Earth System modellingg. In: Hawkesworth CJ, Sparks RSJ (eds) The State of the Planet: Frontiers and Challenges. AGU Monograph

    Google Scholar 

  • Raunkiær C (1909) Formationsundersøgelse og formationstatistik. Bot. Tidsskr. 30:20–80

    Google Scholar 

  • Raunkiær C (1913) Formationsstatistike Undersøgelser paa Skagens Odde. Botanisk Tidsskrift. Dansk Botanisk Forening 33:197–243

    Google Scholar 

  • Raunkiær C (1934) The life-forms of plants and statistical plant geography. Clarendon Press, Oxford

    Google Scholar 

  • Ridgwell A, Marshall S, Gregson K (1999) Consumption of atmospheric methane by soils: a process-based model. Global Biogeochemical Cycles 13:59–70

    Google Scholar 

  • Rödenbeck C, Houweling S, Gloor M, Heimann M (2003) CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3:1919–1964

    Google Scholar 

  • Roderick ML, Farquhar GD, Berry SL, Noble IR (2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:213–232

    Google Scholar 

  • Ruddiman WF (2003). The Anthropogenic Greenhouse Era Began Thousands of Years Ago. Climatic Change, 61:261–293

    Google Scholar 

  • Ruimy A, Dedieu G, Saugier B (1996) TURC: A diagnostic model of continental gross primary productivity and net primary productivity Global Biogeochemical Cycles 10:269–285

    Google Scholar 

  • Running SW, Gower ST (1991) FOREST-BGC, a general model of forest ecosystem processes for regional applications. 2. Dynamic carbon allocation and nitrogen budgets. Tree Physiology 9:147–160

    Google Scholar 

  • Running SW, Hunt ER (1993) Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. Scaling processes between leaf and landscape levels. In: Ehleringer JR, Field CB (eds) Scaling Physiological Processes: Leaf to Globe. Academic Press, San Diego, 141–158

    Google Scholar 

  • Ryan MG (1991) Effects of climate change on plant respiration. Ecological Applications 1:157–167

    Google Scholar 

  • Schäfer KVR, Oren R, Ellsworth DS, Lai CT, Herrick JD, Finzi AC, Richter DD, Katul GG (2003) Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem. Global Change Biology 9:10, 1378–1400

    Google Scholar 

  • Schaphoff S, Lucht W, Gerten D, Sitch S, Cramer W, Prentice IC (2006) Terrestrial biosphere carbon storage under alternative climate projections. Climatic Change 74:97–122, doi: 10.1007/s10584-005-9002-5

    Google Scholar 

  • Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore III B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172

    Google Scholar 

  • Scholze M, Kaplan JO, Knorr W, Heimann M (2003) Climate and interannual variability of the atmosphere-biosphere 13CO2 flux. Geophysical Research Letters 30: 1097, doi:10.1029/2002GL015631

    Google Scholar 

  • Schulze E-D (1982) Plant life forms and their carbon, water and nutrient relations Encyclopedia of Plant Physiology. Springer-Verlag, Berlin, Heidelberg, 615–676

    Google Scholar 

  • Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (SiB) for use within general circulation models. Journal of the Atmospheric Sciences 43:505–531

    Google Scholar 

  • Sernander R (1936) The primitive forest of Granskär and Fiby. Acta Phytogeogr. Suec. 8

    Google Scholar 

  • Shugart HH (1984) A Theory of Forest Dynamics. Springer-Verlag, New York

    Google Scholar 

  • Shugart HH, West DC (1977) Development of an Appalachian deciduous forest succession model and its application to assessment of impact of chestnut blight. Journal of Environmental Management 5:161–179

    Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9:161–185

    Google Scholar 

  • Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecology and Biogeography 10:621–637

    Google Scholar 

  • Specht RL (1972) Water use by perennial evergreen plant communities in Australia and Papua New Guinea. Australian Journal of Botany 20:273–299

    Google Scholar 

  • Sprugel DG (1976) Dynamic structure of wave-generated Abies balsamea forests in the northeastern United States. Journal of Ecology 64:889–911

    Google Scholar 

  • Sykes MT, Prentice IC, Smith B, Cramer W, Venevsky S (2001) An introduction to the European Terrestrial Ecosystem Modelling Activity. Global Ecology and Biogeography 10:581–593

    Google Scholar 

  • Tegen I, Harrison SP, Kohfeld KE, Prentice IC, Coe MT, Heimann M (2002) Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study. Journal of Geophysical Research-Atmospheres 107: 4576, doi:4510.1029/2001JD000963

    Google Scholar 

  • Thonicke K, Venevsky S, Sitch S, Cramer W (2001) The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Global Ecology and Biogeography 10:661–677

    Google Scholar 

  • Thonicke K, Prentice IC, Hewitt C (2005) Modelling glacial-interglacial changes in global fire regimes and trace gas emissions. Global Biogeochemical Cycles 19, GB3008, doi:10.1029/2004GB002278

    Google Scholar 

  • Townsend AR, Braswell BH, Holland EA, Penner JE (1996) Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecological Applications 6:806–814

    Google Scholar 

  • VEMAP Members (1995) Vegetation/ecosystem modeling and analysis project: Comparing biogeography and biogeochemistry models in a continental-scale study of terresttrial ecosystem responses to climate change and CO2 doubling. Global Biogeochemical Cycles 9:407–437

    Google Scholar 

  • Venevsky S, Thonicke K, Sitch S, Cramer W (2002) Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case study. Global Change Biology 8:984–998

    Google Scholar 

  • Walter H (1962) Die Vegetation der Erde in ökophysiologischer Betrachtung — Die tropischen und subtropischen Zonen, Band 1. VEB Gustav Fischer Verlag, Jena

    Google Scholar 

  • Walter H (1968) Die Vegetation der Erde in ökophysiologischer Betrachtung — Die gemässigten und arktischen Zonen, Band 2. VEB Gustav Fischer Verlag, Jena

    Google Scholar 

  • Warnant P, François L, Strivay D, Gérard J-C (1994) CARAIB: a global model of terrestrial biological productivity. Global Biogeochemical Cycles 8:255–270

    Google Scholar 

  • Watt AS (1947) Pattern and process in the plant community. Journal of Ecology 1/2:1–22

    Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems, 2nd edition. Macmillan, New York

    Google Scholar 

  • Woodward FI (1987) Climate and Plant Distribution. Cambridge University Press, Cambridge, pp 174

    Google Scholar 

  • Woodward FI, Lomas ML (2004) Vegetation dynamics — simulating responses to climatic change, Biological Reviews 79, 1–28; DOI: 10.1017/S1464793103006419

    Google Scholar 

  • Woodward FI, Smith TM, Emanuel WR (1995) A global land primary productivity and phytogeography model. Global Biogeochemical Cycles 9:471–490

    Google Scholar 

  • Woodward FI, Lomas MR, Lee SE (2001) Predicting the future productivity and distribution of global terrestrial vegetation. In: Roy J, Mooney HA, Saugier B (eds) Terrestrial Global Productivity, Academic Press, San Diego, pp 521–541

    Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Google Scholar 

  • Zhou LM, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research-Atmospheres 106: 20069–20083

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prentice, I.C. et al. (2007). Dynamic Global Vegetation Modeling: Quantifying Terrestrial Ecosystem Responses to Large-Scale Environmental Change. In: Canadell, J.G., Pataki, D.E., Pitelka, L.F. (eds) Terrestrial Ecosystems in a Changing World. Global Change — The IGBP Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32730-1_15

Download citation

Publish with us

Policies and ethics