Skip to main content

Predicting the Ecosystem Consequences of Biodiversity Loss: the Biomerge Framework

  • Chapter
Terrestrial Ecosystems in a Changing World

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler PB (2004) Neutral models fail to reproduce observed species-area relationships in Kansas grasslands. Ecology 85:1265–1272

    Google Scholar 

  • Adler PB, Bradford JB (2002) Compensation: an alternative method for analyzing diversity-productivity experiments. Oikos 96:411–420

    Google Scholar 

  • Andreae MO (2002) Humanity: Passenger or pilot on Spaceship Earth? In: Global Change Newsletter. International Geosphere Biosphere Program, Stockholm, pp 2–6

    Google Scholar 

  • Andren O, Bengtsson J, Clarholm M (1995) Biodiversity and species redundancy among litter decomposers. In: Collins HP, Robertson GP, Klug MJ (eds) The significance and regualtion of soil biodiversity. Kluwer Academic Publishers, Amsterdam, Netherlands, pp 141–151

    Google Scholar 

  • Austin MP (1982) Use of a relative physiological performance value in the prediction of performance in multi species mixtures from monoculture performance. Journal of Ecology 70:559–570

    Google Scholar 

  • Austin MP (1985) Continuum concept, ordination methods, and niche theory. Annual Review of Ecology, Evolution, snd Systematics 16:39–61

    Google Scholar 

  • Austin MP (1999) The potential contribution of vegetation ecology to biodiversity research. Ecography 22:465–484

    Google Scholar 

  • Bai Y, Han X, Wu J, Chen Z, Li L (2004) Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431:181–184

    Google Scholar 

  • Balmford A, Bruner A, Cooper P, Costanza R, Farber S, Green RE, Jenkins M, Jefferiss P, Jessamy V, Madden J, Munro K, Myers N, Naeem S, Paavola J, Rayment M, Rosendo S Roughgarden J, Trumper K, Turner KR (2002) Economic reasons for conserving wild nature. Science 297:950–953

    Google Scholar 

  • Bardgett RD, Shine A (1999) Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biology and Biochemistry 31:317–321

    Google Scholar 

  • Beare MH, Coleman DC, Crossley DA, Hendrix PF, Odum EP (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant and Soil 170:5–122

    Google Scholar 

  • Bell G (2000) The distribution of abundance in neutral communities. American Naturalist 155:606–617

    Google Scholar 

  • Blackburn TM, Gaston KJ (eds) (2003) Macroecology: Concepts and Consequences. Blackwell Publishing, Malden, Massachusetts

    Google Scholar 

  • Bolker BM, Pacala SW, Bazzaz FA, Canham CD, Levin SA (1995) Species diversity and ecosystem response to carbon dioxide fertizliation: conclusions form a temperate forest model. Global Change Biology 1:373–381

    Google Scholar 

  • Brown JH (1995) Macroecology. University of Chicago Press, Chicago

    Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004a) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Google Scholar 

  • Brown JH, Gillooly JE, Allen AP, Savage VM, West GB (2004b) Response to forum commentary on “toward a metabolic theory of ecology”. Ecology 85:1818–1821

    Google Scholar 

  • Callaway RM (1997) Positive interactions in plant communities and the individualistic-continuum concept. Oecologia 112:143–149

    Google Scholar 

  • Carbone C, Gittleman JL (2002) A common rule for the scaling of carnivore density. Science 295:2273–2276

    Google Scholar 

  • Cardinale BJ, Ives AR, Inchausti P (2004) Effects of species diversity on the primary productivity of ecosystems: extending our spatial and temporal scales of inference. Oikos 104:437–450

    Google Scholar 

  • Cavigelli MA, Robertson GP (2000) The functional significance of denitrifier community composition in a terrestrial ecosystem. Ecology 81:1402–1414

    Google Scholar 

  • Chapin III FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature 405:234–242

    Google Scholar 

  • Chase JM, Leibold MA (2002) Spatial scale dictates the productivity-biodiversity relationship. Nature 416:427–430

    Google Scholar 

  • Costanza R, R. d’ Arge, Groot Rd, Farber S, Grasso M, B. Hannon, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, Belt. MVd (1997) The value of the world’s ecosystem services and natural capital. Nature 357:253–260

    Google Scholar 

  • Cyr H, Walker SC (2004) An illusion of mechanistic understanding. Ecology 85:1802–1804

    Google Scholar 

  • Daily GC, Alexander S, Ehrlich PR, Goulder L, Lubchenco J, Matson PA, Mooney HA, Postel S, Schneider SH, Tilman D, Woodwell GM (1997) Ecosystem services: Benefits supplied to human societies by natural ecosystems. Issues in Ecology 2:1–18

    Google Scholar 

  • De Mazancourt C, Loreau M, Abbadie L (1998) Grazing optimization and nutrient cycling: when do herbivores enhance plant production? Ecology 79:2242–2252

    Google Scholar 

  • Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evoluition 16:646–655

    Google Scholar 

  • Díaz S, Grime JP, Harris J, McPherson E (1993) Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364:616–617

    Google Scholar 

  • Doak DF, Bigger D, Harding-Smith E, Marvier MA, O’Malley R, Thomson D (1998) The statistical inevitability of stability-diversity relationships in community ecology. American Naturalist 151:264–276

    Google Scholar 

  • Duffy JE, McDonald SK, Rhode JM, Parker JD (2001) Grazer diversity, functional redundancy, and productivity in seagress beds: An experimental test. Ecology 82:2417–2434

    Google Scholar 

  • Duraiappah AK, Naeem S (2005) Synthesis Report on Biodiversity. M. Assessment, Island Press

    Google Scholar 

  • Ehrlich PR (1988) The loss of biodiversity: causes and consequences. In: Wilson EO (ed) Biodiversity. National Academy Press, Washington, DC, pp 21–27

    Google Scholar 

  • Elser JJ, Sterner R (2002) Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Emmerson MC, Raffaelli DG (2000) Detecting the effects of diversity on measures of ecosystem functioning: experimental design, null models and empirical observations. Oikos 91:195–203

    Google Scholar 

  • Emmerson MC, Solan M, Emes C, Paterson DM, Raffaelli DG (2001) Consistent patterns and the idiosyncratic effects of biodiversity in marine ecosystems. Nature 411:73–77

    Google Scholar 

  • Engelhardt KAM, Ritchie ME (2001) Effects of macrophyte species richness on wetland ecosystem functionng and services. Nature 411:687–689

    Google Scholar 

  • Enquist BJ, Niklas KJ (2002) Global allocation rules for patterns of biomass partitioning in seed plants. Science 295:1517–1520

    Google Scholar 

  • Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature 395:163–165

    Google Scholar 

  • Foster BL, Dickson TL (2004) Grassland diversity and productivity: The interplay of resource availability and propagule pools. Ecology 85:1541–1547

    Google Scholar 

  • Fox JW (2004) Effects of algal and herbivore diversity on the partitioning of biomass within and among trophic levels. Ecology 85:549–559

    Google Scholar 

  • Freckman DW, Virginia RA (1997) Low-diversity antarctic soil nematode communities: distribution and response to disturbance. Ecology 78:363–369

    Google Scholar 

  • Fridley JD (2003) Diversity effects on production in different light and fertility environments: an experiment with communities of annual plants. J Ecology 91:396–406

    Google Scholar 

  • Fukami T, Morin PJ (2003) Productivity-biodiversity relationships depend on the history of community assembly. Nature 424:423–426

    Google Scholar 

  • Garnier E, Navas M-L, Austin MP, Lilley JM, Gifford RM (1997) A problem for biodiversity-productivity studies: how to compare the productivity of multispecific plant mixtures to that of monocultures? Acta Oecologica 18:657–670

    Google Scholar 

  • Gaston K (2000) Global patterns in biodiversity. Nature 405:220–227

    Google Scholar 

  • Grimm NB (1995) Why link species and ecosystems? A perspective from ecosystem ecology. In: Jones CG, Lawton JH (eds) Linking Species and Ecosystems. International Thomson Publishing, New York, pp 5–15

    Google Scholar 

  • Groombridge B (ed) (1992) Global biodiversity. Chapman and Hall, London, United Kingdom

    Google Scholar 

  • Groves RH, Austin MP, Kaye PE (2003) Competition between Australian native and introduced grasses along a nutrient gradient. Austral Ecology 28:491–498

    Google Scholar 

  • Guterman L (2000) Have ecologists oversold biodiversity? Some scientists question experiments on how numerous species help ecosystems. The Chronicle of Higher Education 47:A24–26

    Google Scholar 

  • Hairston NGS, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. American Naturalist 106:249–257

    Google Scholar 

  • Harte J, Kinzig AP (1993) Mutualism and competition between plants and decomposers: implicatins for nutrient allocation in ecosystems. American Naturalist 141:829–846

    Google Scholar 

  • Hawksworth DL (ed) (1995) Biodiversity measurement and estimation. Chapman and Hall, London

    Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder PH, Donovan GO, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze MD, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127

    Google Scholar 

  • Heemsbergen DA, Berg MP, Loreau M, van Hal JR, Faber JH, Verhoef HA (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306:1019–1020

    Google Scholar 

  • Heywood VH (ed) (1995) Global biodiversity assessment. UNEP and Cambridge University Press, Cambridge

    Google Scholar 

  • Hodgson JG, Thompson K, Bogaard A, Wilson PJ (1998) Does biodiversity determine ecosystem function? The Ecotron experiment reconsidered. Functional Ecology 12:843–848

    Google Scholar 

  • Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277:1302–1305

    Google Scholar 

  • Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nturient cycling. Ecological Monographs 68:121–149

    Google Scholar 

  • Hooper DU, Solan M, Symstad A, Díaz S, Gessner MO, Buchmann N, Degrange V, Grime P, Hulot F, Mermillod-Blondin F, Roy J, Spehn E, van Peer L (2002) Species diversity, functional diversity and ecosystem functioning. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and Ecosystem Functioning. Oxford University Press, Oxford, pp 195–208

    Google Scholar 

  • Hooper DU, Chapin III FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge and needs for future research. Ecological Applications 75:3–35

    Google Scholar 

  • Horn HS (2004) Commentary on Brown et al.’s “toward a metabolic theory of ecology”. Ecology 85:1816–1818

    Google Scholar 

  • Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Hughes RG (1986) Theories and models of species abundance. The American Naturalist 128:879–899

    Google Scholar 

  • Hughes JB, Ives AR, Norberg J (2002) Do species interactios buffer environmental variation (in theory)? In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and Ecosystem Functioning: Synthesis and perspectives. Oxford University Press, Oxford, pp 92–101

    Google Scholar 

  • Joffre R, Ågren GI (2001) From plant to soil: Litter production and decomposition. In: Roy J, Saugier B, Mooney HA (eds) Terrestral Productivity. Academic Press, San Diego, CA, USA, pp 83–99

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Google Scholar 

  • Kaiser J (2000) Rift over biodiversity divides ecologists. Science 289:1282–1283

    Google Scholar 

  • Kuhn TS (1962) The structure of scientific revolutions. The University of Chicago Press, Chicago

    Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16:545–556

    Google Scholar 

  • Lepš J, Brown VK, Díaz Len TA, Gormsen D, Hedlund K, Kailová J, Korthals GW, Mortimer SR, Rodriguez-Barrueco C, Roy J, Santa Regina I, van Dijk C, van der Putten WH (2001) Separating the chance effect from other diversity effects in the functioning of plant communities. Oikos 92:123–134

    Google Scholar 

  • Levine JM (2000) Complex interactions in a streamside plant community. Ecology 81:3431–3444

    Google Scholar 

  • Li B-a, Gorshkov VG, Makarieva AM (2004) Energy partitioning between different-sized organisms and ecosystem stability. Ecology 85:1811–1813

    Google Scholar 

  • Liiri M, Setälä H, Haimi J, Pennanen T, Fritze H (2002) Relationship between soil microarthropod species diversity and plant growth does not change when the system is disturbed. Oikos 96:137–149

    Google Scholar 

  • Likens GE (1992) The Ecosystem Approach: Its Use and Abuse. Ecology Institute, Oldendorf/Luhe, Germany

    Google Scholar 

  • Loreau M (2004) Does functional redundancy exist? Oikos 104:606–611

    Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294:806–808

    Google Scholar 

  • Loreau M, Naeem S, Inchausti P (eds) (2002) Biodiversity and Ecosystem Functioning: Synthesis and Perspectives. Oxford University Press, Oxford

    Google Scholar 

  • Lubchenco J, Olson AM, Brubacker LB, Carpenter SR, Holland MM, Hubbell SP, Levin SA, MacMahon JA, Matson PA, Melillo JM, Mooney HA, Pulliam HR, Real LA, Regal PJ, Risser PG (1991) The sustainable biosphere initiative: an ecological research agenda. Ecology 72:371–412

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, N.J

    Google Scholar 

  • Marquet PA, Labra FA, Maurer BA (2004) Metabolic ecology: Linking individuals to ecosystems. Ecology 85:1794–1796

    Google Scholar 

  • Martinez ND (1996) Defining and measuring functional aspects of biodiversity. In: Gaston K (ed) Biodiversity: A biology of numbers and difference. Blackwell Science Ltd., Oxford, pp 114–148

    Google Scholar 

  • May RM (1975) Patterns of species abundance and diversity. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Belknap Press of Harvard University, Cambridge, MA, pp 81–120

    Google Scholar 

  • McGrady-Steed J, Morin PJ (2000) Biodiversity, density compensation, and the dynamics of populations and functional groups. Ecology 81:361–373

    Google Scholar 

  • McIntosh RP (1985) The background of ecology. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  • Mikola J, Setälä H (1998) Relating species diversity to ecosystem functioning: mechanistic backgrounds and experimental approach with a decomposer food web. Oikos 83

    Google Scholar 

  • Mikola J, Barker GM, Wardle DA (2000) Linking above-ground and below-ground effects in autotrophic microcosms: effects of shading and defoliation on plant and soil properties. Oikos 89:577–587

    Google Scholar 

  • Mikola J, Yeates GW, Barker GM, Wardle DA, Bonnre KI (2001) Effects of defoliation intensity on soil food-web proerties in an experimental grassland community. Oikos 92:333–343

    Google Scholar 

  • Mooney HA, Fuentes ER, Kronberg BI (eds) (1993) Earth System responses to global change: contrasts between North and South America. Academic Press, San Diego

    Google Scholar 

  • Mulder CPH, Koricheva J, Huss-Danell K, Högberg P, Joshi J (1999) Insects affect relationships between plant species richness and ecosystem processes. Ecology Letters 2:237–246

    Google Scholar 

  • Mulder C, Breure AM, Joosten JHJ (2003) Fungal functional diversity inferred along Ellenberg’s abiotic gradients: Palynological evidence from different soil microbiota. Granna 42:55–64

    Google Scholar 

  • Naeem S (1998) Species redundancy and ecosystem reliability. Conservation Biology 12:39–45

    Google Scholar 

  • Naeem S (2001a) How changes in biodiversity may affect the provision of ecosystem services. In: Hollowell VC (ed) Managing Human Dominated Ecosystems. Missouri Botanical Garden Press, St. Louis, pp 3–33

    Google Scholar 

  • Naeem S (2001b) Experimental validity and ecological scale as tools for evaluating research programs. In: Gardner RH, Kemp WM, Kennedy VS, Petersen JE (eds) Scaling relationships in experimental ecology. Columbia University Press, New York, pp 223–250

    Google Scholar 

  • Naeem S (2002) Ecosystem consequences of biodiversity loss: The evolution of a paradigm. Ecology 83:1537–1552

    Google Scholar 

  • Naeem S, Li S (1997) Biodiversity enhances ecosystem reliability. Nature 390:507–509

    Google Scholar 

  • Naeem S, Wright JP (2003) Disentangling biodiversity effects on ecosystem functioning: Deriving solutions to a seemingly insurmountable problem. Ecology Letters 6:567–579

    Google Scholar 

  • Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM (1994) Declining biodiversity can alter the performance of ecosystems. Nature 368:734–737

    Google Scholar 

  • Naeem S, Hahn D, Schuurman G (2000) Producer-decomposer codependency modulates biodiversity effects. Nature 403:762–764

    Google Scholar 

  • Naeem S, Loreau M, Inchausti P (2002) Biodiversity and Ecosystem Functioning: The emergence of a synthetic ecological framework. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning:synthesis and perspectives. Oxford University Press, Oxford, pp 3–11

    Google Scholar 

  • Navas M-L, Garnier E, Austin MP, Gifford RM (1999) Effect of competition on the responses of grasses and legumes to elevated atmospheric CO2 along a nitrogen gradient: differences between isolated plants, monocultures and multi-species mixtures. New Phytologist 143:323–331

    Google Scholar 

  • Niklas KJ, Enquist BJ (2002) Invariant scaling relationships for interspecific plant biomass production rates and body size. Proceedings of the National Academy of Sciences of the United States of America 98:2922–2927

    Google Scholar 

  • Øvreås L (2000) Population and community level approaches for analysing microbial diversity in natural environments. Ecology Letters 3:236–251

    Google Scholar 

  • Palmer M, Bernhardt E, Chornesky E, Collins S, Dobson A, Duke C, Gold B, Jacobson R, Kingsland S, Kranz R, Mappin M, Martinez ML, Micheli F, Morse J, Pace M, Pascual M, Palumbi S, Reichman OJ, Simons A, Townsend A, Turner M (2004) Ecology for a Crowded Planet. Science 304:1251–1252

    Google Scholar 

  • Petchey OL, Gaston K (2002) Functional diversity (FD), species richness and community composition. Ecology Letters 5:402–411

    Google Scholar 

  • Petchey OL, Morin PJ, Hulot F, Loreau M, McGrady-Steed J, Lacroix G, Naeem S (2002) Contributions of aquatic model systems to our understanding of biodiversity and ecosystem functioning. In: Loreau M, Naeem S, Inchausti P (eds). Oxford University Press, UK, Oxford, pp 127–138

    Google Scholar 

  • Petchey OL, Downing AL, Mittelbach GG, Persson L, Steiner CF, Warren PH, Woodward G (2004) Species loss and the structure and functioning of multitrophic aquatic systems. Oikos 104:467–478

    Google Scholar 

  • Polis GA, Strong DR (1996) Food web complexity and community dynamics. American Naturalist 147:813–846

    Google Scholar 

  • Power ME (1996) Challenges in the quest for keystones. BioScience 46:609–620

    Google Scholar 

  • Preston FW (1962) The canonical distribution of commonness and rarity. Ecology 43:185–215, 410–432

    Google Scholar 

  • Raven PH (2002) Science, sustainability, and the human prospect. Science 297:954–958

    Google Scholar 

  • Reich PB, Tilman D, Naeem S, Ellsworth DS, Knops J, Craine J, Wedin D, Trost J (2004) Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. Proceedings of the National Academy of Sciences of the United States of America 101:10101–10106

    Google Scholar 

  • Roscher C, Temperton VM, Scherer-Lorenzen M, Schmit M, Schumacher J, Schmid B, Buchmann N, Weisser WW, Schulze ED (2005) Overyielding in experimental grassland communities — irrespective of species pool or spatial scale. Ecol Letters 8:419–429

    Google Scholar 

  • Sala OE, Chapin FS, III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global Biodiversity Scenarios for the Year 2100. Science 287:1770–1774

    Google Scholar 

  • Sankaran M, McNaughton SJ (1999) Determinants of biodiversity regulate compositional stabitliy of communities. Nature 401:691–693

    Google Scholar 

  • Schläpfer F, Schmid B (1999) Ecosystem effects of biodiversity: A classification of hypotheses and exploration of empirical results. Ecological Applications 9:893–912

    Google Scholar 

  • Schmid B (2002) The species richness-productivity controversy. Trends in Ecology and Evolution 17:113–114

    Google Scholar 

  • Schmid B, Joshi J, Schläpfer F (2002) Empirical evidence for biodiversity-ecosystem functioning relationships. In: Kinzig A, Pacala SW, Tilman D (eds) The functional consequences of biodiversity. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Schulze ED, Mooney HA (eds) (1993) Biodiversity and Ecosystem Function. Springer-Verlag, New York

    Google Scholar 

  • Setälä H, Huhta V (1991) Soil fauna increase Betula pendula growth: laboratory experiments with coniferous forest floor. Ecology 72:665–671

    Google Scholar 

  • Smith TM, Shugart HH, Woodward FI (eds) (1997) Plant functional types. Cambridge University Press, Cambridge

    Google Scholar 

  • Solan M, Cardinale BJ, Downing AL, Engelhardt KAM, Ruesink JL, Srivastava DS (2004) Extinction and ecosystem function in the marine benthos. Science 306:1177–1180

    Google Scholar 

  • Soulé ME (1991) Conservation: tactics for a constant crisis. Science 253:744–750

    Google Scholar 

  • Spehn EM, Joshi J, Schmid B, Alphei J, Körner C (2000) Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant and Soil 224:217–230

    Google Scholar 

  • Spehn EM, Hector A, Joshi J, Scherer-Lorenzen M, Schmid B, Bazeley-White E, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Jumpponen A, Koricheva J, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Palmborg C, Pereira JS, Pfisterer AB, Prinz A, Read DJ, Schulze ED, Siamantziouras ASD, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (2005) Ecosystem effects of biodiversity manipulations in European grasslands. Ecological Monographs 75:37–63

    Google Scholar 

  • Stachowicz JJ, Fried H, Osman RW, Whitllatch RB (2002) Biodiversity, invasion resistance, and marine ecosystem function. Reconciling pattern and process. Ecology 83:2575–2590

    Google Scholar 

  • Statzner B, Moss B (2004) Linking ecological function, biodiversity and habitat: a mini-review focusing on older ecological literature. Basic & Applied Ecology 5:97–106

    Google Scholar 

  • Stephan A, Meyer A, Schmid B (2001) Plant diversity affects culturable soil bacteria in experimental grassland communities. Journal of Ecology 88:988–998

    Google Scholar 

  • Sugihara G (1980) Minimal community structure: an explanation of species abundance patterns. American Naturalist 116:770–787

    Google Scholar 

  • Symstad AJ (2000) A test of the effects of functional group richness and composition on grassland invasibility. Ecology 81:99–109

    Google Scholar 

  • Symstad AJ, Tilman D (2001) Diversity loss, recruitment limitation, and ecosystem functioning: Lessons learned from a removal experiment. Oikos 92:424–435

    Google Scholar 

  • Symstad AJ, Tilman D, Wilson J, Knops J (1998) Species loss and ecosystem functioning: effects of species identity and community composition. Oikos 81:389–397

    Google Scholar 

  • Symstad AJ, Chapin III FS, Wall DH, Gross KL, Huenneke LF, Mittelbach GG, Peters DPC, Tilman D (2003) Long-term and large-scale perspectives on the relationship between biodiversity and ecosystem functioning. Bioscience 53:89–98

    Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Sieman E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Google Scholar 

  • Tilman D, HillerRisLambers J, Harpole S, Dybzinski R, Fargione J, Clark C, Lehman C (2004) Does metabolic theory apply to community ecology? It’s a matter of scale. Ecology 85:1797–1799

    Google Scholar 

  • Torsvik V, Øvreås L, Thingstad TF (2002) Prokaryotic diversity — magnitude, dynamics, and controlling factors. Science 296:1064–1066

    Google Scholar 

  • Troumbis AY, Memtas D (2000) Observational evidence that diversity may increase productivity in Mediterranean shrublands. Oecologia 125:101–108

    Google Scholar 

  • Troumbis AY, Dimitrakopoulous PG, Siamantzioura A-SD, Memtsas D (2000) Hidden diversity and productivity patterns in mixed Mediterranean grasslands. Oikos 90:549–559

    Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders R (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Google Scholar 

  • Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, Cambridge, U.K

    Google Scholar 

  • Vandermeer J, Lawrence D, Symstad A, Hobbie S (2002) Effect of biodiversity on ecosystem functioning in managed ecosystems. In: Naeem S, Loreau M, Inchausti P (eds) Biodiversity and ecosystem functioning:synthesis and perspectives. Oxford University Press, Oxford, pp 221–233

    Google Scholar 

  • Vitousek PM, Hooper DU (1993) Biological diversity and terrestrial ecosystem biogeochemistry. In: Schulze ED, Mooney HA (eds) Biodiversity and Ecosystem Function. Springer-Verlag, New York, pp 3–14

    Google Scholar 

  • Walker B, Steffan W (eds) (1996) Global change and terrestrial ecosystems. Cambridge University Press, Cambridge, U.K

    Google Scholar 

  • Wardle DA, Nicholson S (1996) Synergistic effects of grassland plant species on soil microbial biomass and activity: implications for ecosystem-level effects of enriched plant diversity. Functional Ecology 10:410–416

    Google Scholar 

  • Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258

    Google Scholar 

  • Wardle DA, Huston MA, Grime JP, Berendse F, Garnier E, Laurenroth WK, Setälä H, Wilson SD (2000) Biodiversity and ecosystem function: an issue in ecology. Bulletin of the Ecological Society of America 81:235–239

    Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological Linkages Between Aboveground and Belowground Biota. Science 304:1629–1633

    Google Scholar 

  • Wilcove DS, Rothstein D, Dubow J, Philips A, Losos E (1998) Quantifying threats to imperiled species in the United States. BioScience 48:607–615

    Google Scholar 

  • Wilson EO (1988) The current state of biological diversity. In: Wilson EO (ed) Biodiversity. National Academy Press, Washington, D.C., pp 3–18

    Google Scholar 

  • Wohl DL, Arora S, Gladstone JR (2004) Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment. Ecology 85:1534–1540

    Google Scholar 

  • Woodwell GM (1995) Biotic feedbacks from the warming of the Earth. In: Woodwell GM, Mackenzie FT (eds) Biotic Feedbacks in the Global Climate System. Oxford University Press, New York, pp 3–21

    Google Scholar 

  • Wright J, Jones CG, Flecker AS (2002) An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia 132:96–101

    Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin FS, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas E, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem functioning in a fluctuating environment: The insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America 96:1463–1468

    Google Scholar 

  • Zavaleta ES, Hulvey KB (2004) Realistic species losses disproportionately reduce grassland resistance to biological invaders. Science 306:1175–1177

    Google Scholar 

  • Zavaleta ES, Shaw MR, Chiariello NR, Mooney HA, Field CB (2003) Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. PNAS 100:7650–7654

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Naeem, S. et al. (2007). Predicting the Ecosystem Consequences of Biodiversity Loss: the Biomerge Framework. In: Canadell, J.G., Pataki, D.E., Pitelka, L.F. (eds) Terrestrial Ecosystems in a Changing World. Global Change — The IGBP Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32730-1_10

Download citation

Publish with us

Policies and ethics