Skip to main content

Evolutionary Design of Gate-Level Polymorphic Digital Circuits

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3449))

Included in the following conference series:

Abstract

A method for the evolutionary design of polymorphic digital combinational circuits is proposed. These circuits are able to perform different functions (e.g. to switch between the adder and multiplier) only as a consequence of the change of a sensitive variable, which can be a power supply voltage, temperature etc. However, multiplexing of standard solutions is not utilized. The evolved circuits exhibit a unique structure composed of multifunctional polymorphic gates considered as building blocks instead. In many cases the area-efficient solutions were discovered for typical tasks of the digital design. We demonstrated that it is useful to combine polymorphic gates and conventional gates in order to obtain the required functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Higuchi, T., et al.: Evolving Hardware with Genetic Learning: A First Step Towards Building a Darwin Machine. In: Proc. of the 2nd International Conference on Simulated Adaptive Behaviour, pp. 417–424. MIT Press, Cambridge (1993)

    Google Scholar 

  2. Koza, J.R., Keane, M.A., Streeter, M.J.: What’s AI Done for Me Lately? Genetic Programming’s Human-Competitive Results. IEEE Intelligent Systems, 25–31 (May/June 2003)

    Google Scholar 

  3. Miller, J., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Miller, J., Job, D., Vassilev, V.: Principles in the Evolutionary Design of Digital Circuits – Part I. Genetic Programming and Evolvable Machines 1(1), 8–35 (2000)

    Article  Google Scholar 

  5. Stoica, A., Zebulum, R.S., Guo, X., Keymeulen, D., Ferguson, I., Duong, V.: Taking Evolutionary Circuit Design From Experimentation to Implementation: Some Useful Techniques and a Silicon Demonstration. IEE Proc.-Comp. Digit. Tech. 151(4), 295–300 (2004)

    Article  Google Scholar 

  6. Stoica, A., Zebulum, R.S., Keymeulen, D., Lohn, J.: On Polymorphic Circuits and Their Design Using Evolutionary Algorithms. In: Proc. of IASTED International Conference on Applied Informatics (AI 2002), Innsbruck, Austria (2002)

    Google Scholar 

  7. Stoica, A., Zebulum, R., Keymeulen, D.: Polymorphic Electronics. In: Liu, Y., Tanaka, K., Iwata, M., Higuchi, T., Yasunaga, M. (eds.) ICES 2001. LNCS, vol. 2210, pp. 291–302. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Thompson, A., Layzell, P., Zebulum, R.S.: Explorations in Design Space: Unconventional Electronics Design Through Artificial Evolution. IEEE Transactions on Evolutionary Computation 3(3), 167–196 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sekanina, L. (2005). Evolutionary Design of Gate-Level Polymorphic Digital Circuits. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2005. Lecture Notes in Computer Science, vol 3449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32003-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32003-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25396-9

  • Online ISBN: 978-3-540-32003-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics