Skip to main content

Ordered Time-Independent CIG Learning

  • Conference paper
Biological and Medical Data Analysis (ISBMDA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3337))

Included in the following conference series:

Abstract

Clinical practice guidelines are medical and surgical statements to assist practitioners in the therapy procedure. Recently, the concept computer-interpretable guideline (CIG) has been introduced to describe formal descriptions of clinical practice guidelines. Ordered time-independent one-visit CIGs are a sort of CIG wich are able to cope with the description and use of real therapies. Here, this representation model and a machine learning algorithm to construct such CIGs from the hospital databases or from predefined CIGs are introduced and tested within the domain of attrial fibrillation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohada, J.A., RiaƱo, D.: A CPG-based CBR model to offer the best available medical therapy. STAIRS 2004, Valencia, Spain (2004) (submitted to)

    Google ScholarĀ 

  2. Clark, P., Niblett, T.: The CN2 induction algorithm. MLĀ 3, 261ā€“283 (1989)

    Google ScholarĀ 

  3. Council of Europe. Developing a methodology for drawing up guidelines on best medical practice. Recomendation Rec(2001)13 and explanatory memorandum. Strasburg, Council of Europe Publishing (2002)

    Google ScholarĀ 

  4. Fox, J., Rahmanzadeh, A.: Disseminating Medical Knowledge: the PROforma Approach. Artificial Intelligence in MedicineĀ 14, 157ā€“181 (1998)

    ArticleĀ  Google ScholarĀ 

  5. Hripcsak, G., Ludemann, P., Pruor, T.A., Wigertz, O.B., Clayton, P.B.: Rationale for the Arden Syntax. Computers in Biomedical ResearchĀ 27(4), 291ā€“324 (1994)

    ArticleĀ  Google ScholarĀ 

  6. Kukar, M.: Transductive reliability estimation for medical diagnosis. Artificial Intelligence in MedicineĀ 29, 81ā€“106 (2003)

    ArticleĀ  Google ScholarĀ 

  7. Kumar, A., Smith, B., Pisanelli, D., et al.: An ontological framework for the implementation of CPG in health care organisations. In: EuroMISE 2004, vol.Ā 122 (2004)

    Google ScholarĀ 

  8. Lavrac, N., Keravnou, E., Zupan, B.: Intelligent Data Analysis in Medicine. Encyclopedia of Computer Science and TechnologyĀ 42, 113ā€“157 (2000)

    Google ScholarĀ 

  9. Lavrac, N.: DM in medicine: selected Tech. and Appl. AIMEDĀ 16(1), 3ā€“23 (1999)

    Google ScholarĀ 

  10. Musen, M.A., Tu, S.W., Das, A.K., Shahar, Y.: EON: A component-based approach to automation of protocol-directed therapy. JAMIAĀ 3(6), 367ā€“388 (1996)

    Google ScholarĀ 

  11. Peleg, M., Boxwala, A., Ogunyemi, O.: GLIF3: The Evolution of a Guideline Representation Format. In: Proceedings of the AMIA Fall Symposium (2000)

    Google ScholarĀ 

  12. Peleg, M., Tu, S., Bury, J., Ciccarese, P., et al.: Comparing Computer-Interpretable Guideline Models: A Case-Study Approach. JAMIAĀ 10(1), 52ā€“68 (2003)

    Google ScholarĀ 

  13. Quaglini, S., Stefanelli, M., Lanzola, M., et al.: Flexible Guideline-Based Patient Careflow Systems. Artificial Intelligence in MedicineĀ 22, 65ā€“80 (2001)

    ArticleĀ  Google ScholarĀ 

  14. RiaƱo, D.: Guideline Composition from Minimum Basic Data Set. In: The 16th IEEE Symposium on Computer-Based Medical Systems, NY, pp. 231ā€“35 (2003)

    Google ScholarĀ 

  15. RiaƱo, D., Bohada, J.A., Welzer, T.: The DTP Model: Integration of intelligent techniques for the decision support in Healthcare Assistance. Eng. Int. Syst. (2004)

    Google ScholarĀ 

  16. RiaƱo, D.: Time-Independent Rule-Based Guideline Induction. In: ECAI 2004 (2004)

    Google ScholarĀ 

  17. Shahar, Y., Miksch, S., Johnson, P.: The Asgaard Project: A Task-Specific Framework for the Application and Critiquing of Time-Oriented Clinical Guidelines. Artificial Intelligence in MedicineĀ 14, 29ā€“51 (1998)

    ArticleĀ  Google ScholarĀ 

  18. In: Kaiser, K., Miksch, S., Tu, S.W. (eds.) Proc. of the Symposium on Computerized Guidelines and Protocols, CGP 2004 (2004)

    Google ScholarĀ 

  19. Veloso, M., Carbonell, J., PĆ©rez, A., et al.: Integrating planning and learning. Journal of Experimental and Theoretical Artificial IntelligenceĀ 7(1) (1995)

    Google ScholarĀ 

  20. Wang, D., Peleg, M., Tu, S.W., Boxwala, A.A., et al.: Representation primitives, process models and patient data in CIGs. Int. J. Med. Info.Ā 68(1-3), 59ā€“70 (2002)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

RiaƱo, D. (2004). Ordered Time-Independent CIG Learning. In: Barreiro, J.M., Martƭn-SƔnchez, F., Maojo, V., Sanz, F. (eds) Biological and Medical Data Analysis. ISBMDA 2004. Lecture Notes in Computer Science, vol 3337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30547-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30547-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23964-2

  • Online ISBN: 978-3-540-30547-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics