Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3328))

Abstract

We consider three complexity-theoretic hypotheses that have been studied in different contexts and shown to have many plausible consequences.

The Measure Hypothesis: NP does not have p-measure 0.

The pseudo-NP Hypothesis: there is an NP Language L such that any DTIME \(2^{{n^\epsilon}}\) Language L’ can be distinguished from L by an NP refuter.

The NP-Machine Hypothesis: there is an NP machine accepting 0* for which no \(2^{{n^\epsilon}}\)-time machine can find infinitely many accepting computations.

We show that the NP-machine hypothesis is implied by each of the first two. Previously, no relationships were known among these three hypotheses. Moreover, we unify previous work by showing that several derandomization and circuit-size lower bounds that are known to follow from the first two hypotheses also follow from the NP-machine hypothesis. We also consider UP versions of the above hypotheses as well as related immunity and scaled dimension hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allender, E.: When the worlds collide: derandomization, lower bounds and kolmogorov complexity. In: Foundations of Software Technology and Theoretical Computer Science, pp. 1–15. Springer, Heidelberg (2001)

    Google Scholar 

  2. Allender, E., Strauss, M.: Measure on small complexity classes with applications for BPP. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 807–818. IEEE Computer Society, Los Alamitos (1994)

    Chapter  Google Scholar 

  3. Ambos-Spies, K., Mayordomo, E.: Resource-bounded measure and randomness. In: Sorbi, A. (ed.) Complexity, Logic and Recursion Theory. Lecture Notes in Pure and Applied Mathematics, pp. 1–47. Marcel Dekker, New York (1997)

    Google Scholar 

  4. Balcázar, J., Schöning, U.: Bi-immune sets for complexity classes. Mathematical Systems Theory 18(1), 1–18 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bshouty, N., Cleve, R., Kannan, S., Gavalda, R., Tamon, C.: Oracles and queries that are sufficient for exact learning. Journal of Computer and System Sciences 52, 421–433 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fenner, S., Fortnow, L., Naik, A., Rogers, J.: Inverting onto functions. Information and Computation 186(1), 90–103 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Glaßer, C., Pavan, A., Selman, A.L., Sengupta, S.: Properties of NP-complete sets. In: Proceedings of the 19th IEEE Conference on Computational Complexity, pp. 184–197. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  8. Hemaspaandra, L.A., Rothe, J., Wechsung, G.: Easy sets and hard certificate schemes. Acta Informatica 34(11), 859–879 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hitchcock, J.M.: Small spans in scaled dimension. SIAM Journal on Computing.(to appear)

    Google Scholar 

  10. Hitchcock, J.M.: MAX3SAT is exponentially hard to approximate if NP has positive dimension. Theoretical Computer Science 289(1), 861–869 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Scaled dimension and nonuniform complexity. Journal of Computer and System Sciences 69(2), 97–122 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: Exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences 65, 672–694 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Impagliazzo, R., Moser, P.: A zero-one law for RP. In: Proceedings of the 18th IEEE Conference on Computational Complexity, pp. 43–47. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  14. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: Proceedings of the 29th ACM Symposium on Theory of Computing, pp. 220–229 (1997)

    Google Scholar 

  15. Kabanets, V.: Easiness assumptions and hardness tests: Trading time for zero error. Journal of Computer and System Sciences 63, 236–252 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kabanets, V.: Derandomization: A brief overview. Bulletin of the EATCS 76, 88–103 (2002)

    MATH  MathSciNet  Google Scholar 

  17. Kannan, R.: Circuit-size lower bounds and non-reducibility to sparse sets. Information and Control 55, 40–56 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Klivans, A., van Melkebeek, D.: Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Computing 31, 1501–1526 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Köbler, J., Watanabe, O.: New collapse consequences of NP having small circuits. SIAM Journal on Computing 28(1), 311–324 (1998)

    Article  MATH  Google Scholar 

  20. Lu, C.-J.: Derandomizing Arthur-Merlin games under uniform assumptions. Computational Complexity 10(3), 247–259 (2001)

    Article  MathSciNet  Google Scholar 

  21. Lutz, J.H.: Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences 44(2), 220–258 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lutz, J.H.: Observations on measure and lowness for \(\Delta^{\mathrm{P}}_2\). Theory of Computing Systems 30(4), 429–442 (1997)

    MATH  MathSciNet  Google Scholar 

  23. Lutz, J.H.: The quantitative structure of exponential time. In: Hemaspaandra, L.A., Selman, A.L. (eds.) Complexity Theory Retrospective II, pp. 225–260. Springer, New York (1997)

    Google Scholar 

  24. Lutz, J.H., Mayordomo, E.: Measure, stochasticity, and the density of hard languages. SIAM Journal on Computing 23(4), 762–779 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lutz, J.H., Mayordomo, E.: Cook versus Karp-Levin: Separating completeness notions if NP is not small. Theoretical Computer Science 164, 141–163 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Miltersen, P.B.: Derandomizing complexity classes. In: Handbook of Randomized Computing, vol. II, pp. 843–934. Kluwer, Dordrecht (2001)

    Google Scholar 

  27. Pavan, A., Selman, A.L.: Separation of NP-completeness notions. SIAM Journal on Computing 31(3), 906–918 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hitchcock, J.M., Pavan, A. (2004). Hardness Hypotheses, Derandomization, and Circuit Complexity. In: Lodaya, K., Mahajan, M. (eds) FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2004. Lecture Notes in Computer Science, vol 3328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30538-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30538-5_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24058-7

  • Online ISBN: 978-3-540-30538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics