Skip to main content

Curves, Hypersurfaces, and Good Pairs of Adjacency Relations

  • Conference paper
Combinatorial Image Analysis (IWCIA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3322))

Included in the following conference series:

Abstract

In this paper we propose several equivalent definitions of digital curves and hypersurfaces in arbitrary dimension. The definitions involve properties such as one-dimensionality of curves and (n – 1)-dimensionality of hypersurfaces that make them discrete analogs of corresponding notions in topology. Thus this work appears to be the first one on digital manifolds where the definitions involve the notion of dimension. In particular, a digital hypersurface in nD is an (n – 1)-dimensional object, as it is in the case of continuous hypersurfaces. Relying on the obtained properties of digital hypersurfaces, we propose a uniform approach for studying good pairs defined by separations and obtain a clssification of good pairs in arbitrary dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, J.C., Thaler, A.I.: The boundary count of digital pictures. J. ACM 18, 105–112 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graphical Models Image Processing 59, 302–309 (1997)

    Article  Google Scholar 

  3. Bertrand, G., Malgouyres, R.: Some topological properties of surfaces in Z 3. J. Mathematical Imaging Vision 11, 207–221 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brimkov, V.E., Andres, E., Barneva, R.P.: Object discretizations in higher dimensions. Pattern Recognition Letters 23, 623–636 (2002)

    Article  MATH  Google Scholar 

  5. Chen, L., Cooley, D.H., Zhang, J.: The equivalence between two definitions of digital surfaces. Information Sciences 115, 201–220 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cohen-Or, D., Kaufman, A., Kong, T.Y.: On the soundness of surface voxelizations. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological Algorithms for Digital Image Processing, pp. 181–204. Elsevier, Amsterdam (1996)

    Chapter  Google Scholar 

  7. Couprie, M., Bertrand, G.: Tessellations by connection. Pattern Recognition Letters 23, 637–647 (2002)

    Article  MATH  Google Scholar 

  8. Duda, R.O., Hart, P.E., Munson, J.H.: Graphical-data-processing research study and experimental investigation. In: TR ECOM-01901-26, March 1967, Stanford Research Institute, Menlo Park (1967)

    Google Scholar 

  9. Eckhardt, U., Latecki, L.: Topologies for the digital spaces Z 2 and Z 3. Computer Vision Image Understanding 90, 295–312 (2003)

    Article  MATH  Google Scholar 

  10. Françon, J.: Discrete combinatorial surfaces. Graphical Models Image Processing 57, 20–26 (1995)

    Article  Google Scholar 

  11. Herman, G.T.: Boundaries in digital spaces: Basic theory. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological Algorithms for Digital Image Processing, pp. 233–261. Elsevier, Amsterdam (1996)

    Chapter  Google Scholar 

  12. Kenmochi, Y., Imiya, A., Ichikawa, A.: Discrete combinatorial geometry. Pattern Recognition 30, 1719–1728 (1997)

    Article  MATH  Google Scholar 

  13. Kim, C.E.: Three-dimensional digital line segments. IEEE Trans. Pattern Analysis Machine Intelligence 5, 231–234 (1983)

    Article  MATH  Google Scholar 

  14. Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  15. Kong, T.Y.: Digital topology. In: Davis, L.S. (ed.) Foundations of Image Understanding, Massachusetts, pp. 33–71. Kluwer, Boston (2001)

    Google Scholar 

  16. Kong, T.Y.: Topological adjacency relations on Z n. Theoretical Computer Science 283, 3–28 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kong, T.Y., Roscoe, A.W., Rosenfeld, A.: Concepts of digital topology. Topology and its Applications 46, 219–262 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kopperman, R., Meyer, P.R., Wilson, R.: A Jordan surface theorem for three-dimensional digital spaces. Discrete Computational Geometry 6, 155–161 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kovalevsky, V.: Multidimensional cell lists for investigating 3-manifolds. Discrete Applied Mathematics 125, 25–44 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lachaud, J.-O., Montanvert, A.: Continuous analogs of digital boundaries: A topological approach to isosurfaces. Graphical Models 62, 129–164 (2000)

    Article  Google Scholar 

  21. Malgouyres, R.: A definition of surfaces of Z 3: A new 3D discrete Jordan theorem. Theoretical Computer Science 186, 1–41 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three-dimensional digital images. Information Control 51, 227–247 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mylopoulos, J.P., Pavlidis, T.: On the topological properties of quantized spaces. I. The notion of dimension. J. ACM 18, 239–246 (1971)

    MathSciNet  Google Scholar 

  24. Reveillès, J.-P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’état, Université Louis Pasteur, Strasbourg, France (1991)

    Google Scholar 

  25. Rosenfeld, A.: Adjacency in digital pictures. Information and Control 26, 24–33 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rosenfeld, A.: Compact figures in digital pictures. IEEE Trans. Systems, Man, Cybernetics 4, 221–223 (1974)

    MATH  Google Scholar 

  27. Rosenfeld, A., Kong, T.Y., Wu, A.Y.: Digital surfaces. CVGIP: Graphical Models Image Processing 53, 305–312 (1991)

    Article  MATH  Google Scholar 

  28. Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J. ACM 13, 471–494 (1966)

    Article  MATH  Google Scholar 

  29. Tourlakis, G.: Homological methods for the classification of discrete Euclidean structures. SIAM J. Applied Mathematics 33, 51–54 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tourlakis, G., Mylopoulos, J.: Some results in computational topology. J. ACM 20, 430–455 (1973)

    Article  MathSciNet  Google Scholar 

  31. Udupa, J.K.: Connected, oriented, closed boundaries in digital spaces: Theory and algorithms. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological Algorithms for Digital Image Processing, pp. 205–231. Elsevier, Amsterdam (1996)

    Chapter  Google Scholar 

  32. Welsh, D.J.A.: Matroid Theory. Academic Press, London (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brimkov, V.E., Klette, R. (2004). Curves, Hypersurfaces, and Good Pairs of Adjacency Relations. In: Klette, R., Žunić, J. (eds) Combinatorial Image Analysis. IWCIA 2004. Lecture Notes in Computer Science, vol 3322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30503-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30503-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23942-0

  • Online ISBN: 978-3-540-30503-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics