Skip to main content

Evolutionary Robotics

  • Reference work entry
Springer Handbook of Robotics

Abstract

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AI:

artificial intelligence

CCD:

charge-coupled devices

DSM:

dynamic state machine

EPFL:

Ecole Polytechnique Fédérale de Lausanne

FPGAs:

field programmable gate array

PIC:

programmable intelligent computer

PIC:

programmable interrupt controller

PLD:

programmable logic device

ROM:

read-only memory

References

  1. S. Nolfi, D. Floreano: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines (MIT Press/Bradford, Cambridge 2000)

    Google Scholar 

  2. J.H. Holland: Adaptation in Natural and Artificial Systems (Univ. of Michigan Press, Ann Arbor 1975)

    Google Scholar 

  3. A.M. Turing: Computing machinery and intelligence, Mind LIX 236, 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  4. V. Braitenberg: Vehicles. Experiments in Synthetic Psychology (MIT Press, Cambridge 1984)

    Google Scholar 

  5. R.D. Beer: Intelligence as Adaptive Behavior: An Experiment in Computational Neuroethology (Academic, San Diego 1990)

    MATH  Google Scholar 

  6. D. Parisi, F. Cecconi, S. Nolfi: Econets: Neural networks that learn in an environment, Network 1, 149–168 (1990)

    Article  Google Scholar 

  7. P. Husbands, I. Harvey: Evolution versus design: Controlling autonomous robots, Integrating Perception Plan. Action, Proc. 3-rd IEEE Annu. Conf. Artif. Intell. Simul. Plan. (IEEE Press, 1992) pp. 139–146

    Google Scholar 

  8. D. Floreano, O. Miglino, D. Parisi: Emergent complex behaviors in ecosystems of neural networks. In: Parallel Architectures and Neural Networks, ed. by E. Caianiello (World Scientific, Singapore 1991)

    Google Scholar 

  9. R.A. Brooks: Intelligence without representation, Artif. Intell. 47, 139–159 (1991)

    Article  Google Scholar 

  10. F. Mondada, E. Franzi, P. Ienne: Mobile robot miniaturization: A tool for investigation in control algorithms, Proc. 3-rd Int. Symp. Exp. Robot., ed. by T. Yoshikawa, F. Miyazaki (Springer, Tokyo 1993) pp. 501–513

    Google Scholar 

  11. L. Steels (Ed.): The Biology and Technology of Intelligent Autonomous Agents, NATO ASI Series (Springer, Berlin 1995)

    Google Scholar 

  12. D. Floreano, F. Mondada: Automatic creation of an autonomous agent: Genetic evolution of a neural-network driven robot. In: From Animals to Animats 3: Proc. 3-rd Int. Conf. Simul. Adapt. Behav, ed. by D. Cliff, P. Husbands, J.A. Meyer, S.W. Wilsonpages (MIT Press-Bradford, Cambridge 1994) pp. 402–410

    Google Scholar 

  13. I. Harvey, P. Husbands, D.T. Cliff: Seeing the light: Artificial evolution, real vision. In: From Animals to Animats 3: Proc. 3-rd Int. Conf. Simul. Adapt. Behav. SAB94, ed. by D.T. Cliff, P. Husbands, J.-A. Meyer, S. Wilson (MIT Press, Cambridge 1994) pp. 392–401

    Google Scholar 

  14. M.A. Lewis, A.H. Fagg, A. Solidum: Genetic programming approach to the construction of a neural network for a walking robot, Proc. IEEE Int. Conf. Robot. Autom. (IEEE Press, 1992) pp. 2618–2623

    Google Scholar 

  15. D. Cliff, I. Harvey, P. Husbands: Explorations in evolutionary robotics, Adapt. Behav. 2, 73–110 (1993)

    Article  Google Scholar 

  16. D.E. Goldberg: Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Redwood City 1989)

    MATH  Google Scholar 

  17. R.D. Beer, H.J. Chiel, L.S. Sterling: Heterogeneous neural networks for adaptive behavior in dynamic environments. In: Neural Information Processing Systems, Vol. 1, ed. by D. Touretzky (Morgan Kauffman, San Mateo 1989) pp. 577–585

    Google Scholar 

  18. H. de Garis: Genetic programming: Evolution of time dependent neural network modules which teach a pair of stick legs to walk, Proc. 9th Eur. Conf. Artif. Intell. (Stockholm 1990) pp. 204–206

    Google Scholar 

  19. R.D. Beer, J.C. Gallagher: Evolving dynamical neural networks for adaptive behavior, Adapt. Behav. 1, 94–110 (1992)

    Article  Google Scholar 

  20. M.A. Lewis, A.H. Fagg, G. Bekey: Genetic algorithms for gait synthesis in a hexapod robot,. In: Recent Trends in Mobile Robots, ed. by Y. Zheng (World Scientific, New Jersey 1994) pp. 317–331

    Google Scholar 

  21. J. Gallagher, R. Beer, M. Espenschiel, R. Quinn: Application of evolved locomotion controllers to a hexapod robot, Robot. Auton. Syst. 19(1), 95–103 (1996)

    Article  Google Scholar 

  22. R.D. Beer, R.D. Quinn, H.J. Chiel, R.E. Ritzmann: Biologically inspired approaches to robotics, Commun. ACM 40, 31–38 (1997)

    Article  Google Scholar 

  23. S. Galt, B.L. Luk, A.A. Collie: Evolution of smooth and efficient walking motions for an 8-legged robot, Proc. 6-th Eur. Workshop Learn. Robots (Brighton 1997)

    Google Scholar 

  24. T. Gomi, K. Ide: Emergence of gaits of a legged robot by collaboration through evolution, IEEE World Congr. Comput. Intell. (IEEE Press, New York 1998)

    Google Scholar 

  25. F. Gruau: Automatic definition of modular neural networks, Adapt. Behav. 3(2), 151–183 (1995)

    Article  Google Scholar 

  26. F. Gruau, K. Quatramaran: Cellular encoding for interactive evolutionary robotics, Proc. 4-th Eur. Conf. Artif. Life, ed. by P. Husbands, I. Harvey (MIT Press, Cambridge 1997) pp. 368–377

    Google Scholar 

  27. J. Kodjabachian, J.A. Meyer: Evolution and development of neural networks controlling locomotion, gradient following and obstacle avoidance in artificial insects, IEEE Trans. Neural Netw. 9, 796–812 (1998)

    Article  Google Scholar 

  28. N. Jakobi: Running across the reality gap: Octopod locomotion evolved in a minimal simulation. In: Evolutionary Robotics: 1-st European Workshop, EvoRobot98, ed. by P. Husbands, J.A. Meyerpages (Springer, Heidelberg 1998) pp. 39–58

    Google Scholar 

  29. R. Téllez, C. Angulo, D. Pardo: Evolving the walking behavior of a 12 DOF quadruped using a distributed neural architecture, Proc. 2-nd Int. Workshop Biol. Inspired Approaches to Adv. Inf. Technol. (Bio-ADITʼ2006), LNCS, Vol. 3853 (Springer, 2006) pp. 5–19

    Google Scholar 

  30. T. Reil, P. Husbands: Evolution of central pattern generators for bipedal walking in real-time physics environments, IEEE Trans. Evol. Comput. 6(2), 10–21 (2002)

    Article  Google Scholar 

  31. www.naturalmotion.com

  32. B. von Haller, A.J. Ijspeert, D. Floreano: Co-evolution of structures and controllers for Neubot underwater modular robots, 8-th European Conference on Artificial Life (ECALʼ2005), ed. by M.S. Capcarrere, A.A. Freitas, P.J. Bentley, C.G. Johnson, J. Timmis (Springer, Berlin 2005) pp. 189–199

    Google Scholar 

  33. E. Vaughan, E.A. Di Paolo, I. Harvey: The evolution of control and adaptation in a 3D powered passive dynamic walker, Proc. 9-th Int. Conf. Simul. Synth. Living Syst. Artif. Life IX, ed. by J. Pollack, M. Bedau, P. Husbands, T. Ikegami, R. Watson (MIT Press, Cambridge 2004) pp. 139–145

    Google Scholar 

  34. T. McGeer: Passive walking with knees, Proc. IEEE Conf. Robot. Autom., Vol. 2 (IEEE Press, 1990) pp. 1640–1645

    Google Scholar 

  35. E. Vaughan, E.A. Di Paolo, I. Harvey: The tango of a load balancing biped, Proc. 7-th Int. Conf. Climbing and Walking Robots (CLAWAR), ed. by M. Armada, P. Gonzalez De Santos (Springer, 2004)

    Google Scholar 

  36. G. McHale, P. Husbands: Quadrupedal locomotion: Gasnets, CTRNNs and hybrid CTRNN/PNNs compared, Proc. 9-th Int. Conf. Simul. Synth. Living Syst. (Alife IX), ed. by J. Pollack, M. Bedau, P. Husbands, T. Ikegami, R. Watson (MIT Press, Cambridge 2004) pp. 106–112

    Google Scholar 

  37. G. McHale, P. Husbands: GasNets and other evolvable neural networks applied to bipedal locomotion. In: From Animals to Animats 8: Proc. 8-th Int. Conf. Simul. Adapt. Behav., SABʼ2004, ed. by S. Schaal (MIT Press, Cambridge 2004) pp. 163–172

    Google Scholar 

  38. J.F. Laszlo, M. van de Panne, E. Fiume: Limit cycle control and its application to the animation of balancing and walking, Proc. SIGGRAPHʼ96, Vol. 30 (ACM, 1996) pp. 155–162

    Google Scholar 

  39. R.A. Brooks: Artificial life and real robots. In: Toward a Practice of Autonomous Systems: Proc. 1-st Eur. Conf. Artif. Life, ed. by F.J. Varela, P. Bourgine (MIT Press, Cambridge 1992) pp. 3–10

    Google Scholar 

  40. R. Featherstone, D. Orin: Robot dynamics: Equations and algorithms, Proc. IEEE Int. Conf. Robot. Autom. (IEEE Press 2000) pp. 826–834

    Google Scholar 

  41. N. Jakobi, P. Husbands, I. Harvey: Noise and the reality gap: The use of simulation in evolutionary robotics. In: Advances in Artificial Life: Proc. 3-rd Eur. Conf. Artif. Life, Lecture Notes in Artificial Intelligence, Vol. 929, ed. by F. Moran, A. Moreno, J.J. Merelo, P. Chacon (Springer, Berlin 1995) pp. 704–720

    Google Scholar 

  42. O. Miglino, H.H. Lund, S. Nolfi: Evolving mobile robots in simulated and real environments, Artif. Life 2, 417–434 (1996)

    Article  Google Scholar 

  43. N. Jakobi: Half-baked, ad-hoc and noisy: Minimal simulations for evolutionary robotics, Proceedings of the 4th European Conference on Artificial Life, ed. by P. Husbands, I. Harvey (MIT Press, Cambridge 1997) pp. 348–357

    Google Scholar 

  44. J.C. Bongard, H. Lipson: Nonlinear system identification using coevolution of models and tests, IEEE Trans. Evol. Comput. 9(4), 361–384 (2005)

    Article  Google Scholar 

  45. J. Urzelai, D. Floreano: Evolution of adaptive synapses: Robots with fast adaptive behavior in new environments, Evol. Comput. 9, 495–524 (2001)

    Article  Google Scholar 

  46. H.R. Maturana, F.J. Varela: Autopoiesis and Cognition: The Realization of the Living (Reidel, Dordrecht 1980)

    Google Scholar 

  47. R.D. Beer: A dynamical systems perspective on agent-environment interaction, Artif. Intell. 72, 173–215 (1995)

    Article  Google Scholar 

  48. P. Funes, B. Orme, E. Bonabeau: Evolving emergent group behaviors for simple humans agents, Proc. 7-th Eur. Conf. Artif. Life, ed. by J. Dittrich, T. Kim (Springer, Berlin 2003) pp. 76–89

    Google Scholar 

  49. S. Nolfi: Behaviour as a complex adaptive system: On the role of self-organization in the development of individual and collective behavior, ComplexUs 2, 195–203 (2006)

    Article  Google Scholar 

  50. S. Nolfi: Power and limits of reactive agents, Neurocomputing 42, 119–145 (2002)

    Article  MATH  Google Scholar 

  51. I. Harvey, P. Husbands, D.T. Cliff, A. Thompson, N. Jakobi: Evolutionary robotics: The Sussex approach, Robot. Auton. Syst. 20, 205–224 (1997)

    Article  Google Scholar 

  52. P. Husbands, I. Harvey, D. Cliff, G. Miller: Artificial evolution: A new path for AI?, Brain Cogn. 34, 130–159 (1997)

    Article  Google Scholar 

  53. N. Jakobi: Evolutionary robotics and the radical envelope of noise hypothesis, Adapt. Behav. 6, 325–368 (1998)

    Article  Google Scholar 

  54. K.O. Stanley, R. Miikkulainen: Evolving neural networks through augmenting topologies, Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  55. M.A. Arbib: Self-reproducing automata – some implications for theoretical biology. In: Towards a Theoretical Biology, Vol. 2, ed. by C.H. Waddington (Edinburgh Univ. Press, Edinburgh 1969) pp. 204–226

    Google Scholar 

  56. J. Aloimonos, I. Weiss, A. Bandopadhay: Active vision, Int. J. Comput. Vis. 1(4), 333–356 (1987)

    Article  Google Scholar 

  57. R. Bajcsy: Active perception, Proc. IEEE, Vol. 76 (1988) pp. 996–1005

    Google Scholar 

  58. D.H. Ballard: Animate vision, Artif. Intell. 48(1), 57–86 (1991)

    Article  MathSciNet  Google Scholar 

  59. P.J. Hancock, R.J. Baddeley, L.S. Smith: The principal components of natural images, Network 3, 61–70 (1992)

    Article  Google Scholar 

  60. D. Floreano, T. Kato, D. Marocco, E. Sauser: Coevolution of active vision and feature selection, Biol. Cybern. 90(3), 218–228 (2004)

    Article  MATH  Google Scholar 

  61. D. Floreano, M. Suzuki, C. Mattiussi: Active vision and receptive field development in evolutionary robots, Evol. Comput. 13(4), 527–544 (2005)

    Article  Google Scholar 

  62. T.D. Sanger: Optimal unsupervised learning in a single-layer feedforward neural network, Neural Netw. 2, 459–473 (1989)

    Article  Google Scholar 

  63. R. Held, A. Hein: Movement-produced stimulation in the development of visually guided behavior, J. Comp. Physiol. Psychol. 56(5), 872–876 (1963)

    Article  Google Scholar 

  64. R. Held: Plasticity in sensory-motor systems, Sci. Am. 213(5), 84–94 (1965)

    Article  Google Scholar 

  65. I. Harvey, E.A. Di Paolo, R. Wood, M. Quinn, E. Tuci: Evolutionary robotics: A new scientific tool for studying cognition, Artif. Life 11(1-2), 79–98 (2005)

    Article  Google Scholar 

  66. D.T. Cliff: Computational neuroethology: a provisional manifesto. In: From Animals to Animats: Proc. 1-st Int. Conf. Simul. Adapt. Behav, ed. by J.-A. Meyer, S.W. Wilson (MIT Press-Bradford, Cambridge 1991) pp. 29–39

    Google Scholar 

  67. M. Suzuki, D. Floreano, E.A. Di Paolo: The contribution of active body movement to visual development in evolutionary robots, Neural Netw. 18(5/6), 656–665 (2005)

    Article  Google Scholar 

  68. S. Healy (Ed.): Spatial Representations in Animals (Oxford Univ. Press, Oxford 1998)

    Google Scholar 

  69. N.A. Schmajuk, H.T. Blair: Place learning and the dynamics of spatial navigation: A neural network approach, Adapt. Behav. 1, 353–385 (1993)

    Article  Google Scholar 

  70. N. Burgess, J.G. Donnett, K.J. Jeffery, J. OʼKeefe: Robotic and neuronal simulation of the hippocampus and rat navigation, Philos. Trans. R. Soc. B-352, 1535–1543 (1997)

    Google Scholar 

  71. J. OʼKeefe, L. Nadel: The Hippocampus as a Cognitive Map (Clarendon, Oxford 1978)

    Google Scholar 

  72. J.S. Taube, R.U. Muller, J.B. Jr. Ranck: Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis, J. Neurosci. 10, 420–435 (1990)

    Google Scholar 

  73. D.E. Rumelhart, J. McClelland, PDP Group: Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations (MIT Press-Bradford, Cambridge 1986)

    Google Scholar 

  74. W. Maas, C.M. Bishop (Ed.): Pulsed Neural Networks (MIT Press, Cambridge 1999)

    Google Scholar 

  75. F. Rieke, D. Warland, R. van Steveninck, W. Bialek: Spikes:: Exploring the Neural Code (MIT Press, Cambridge 1997)

    Google Scholar 

  76. G. Indiveri, P. Verschure: Autonomous vehicle guidance using analog VLSI neuromorphic sensors, Proc. 7-th Int. Conf. Neural Netw., ed. by W. Gerstner, A. Germond, M. Hasler, J.D. Nicoud (Springer, Berlin 1997) pp. 811–816

    Google Scholar 

  77. M.A. Lewis, R. Etienne-Cummings, A.H. Cohen, M. Hartmann: Toward biomorphic control using custom aVLSI CPG chips, Proc. IEEE Int. Conf. Robot. Autom. (IEEE Press, 2000) pp. 494–500

    Google Scholar 

  78. D. Floreano, C. Mattiussi: Evolution of spiking neural controllers for autonomous vision-based robots. In: Evolutionary Robotics. From Intelligent Robotics to Artificial Life, ed. by T. Gomi (Springer, Tokyo 2001) pp. 38–61

    Chapter  Google Scholar 

  79. W. Gerstner, J.L. van Hemmen, J.D. Cowan: What matters in neuronal locking?, Neural Comput. 8, 1653–1676 (1996)

    Article  Google Scholar 

  80. D. Floreano, Y. Epars, J.C. Zufferey, C. Mattiussi: Evolution of spiking neural circuits in autonomous mobile robots, Int. J. Int. Syst. 21(9), 1005–1024 (2006)

    Article  Google Scholar 

  81. J.A. Gally, P.R. Montague, G.N. Reeke, G.M. Edelman: The NO hypothesis: Possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system, Proc. Natl. Acad. Sci. USA, Vol. 87 (1990) pp. 3547–3551

    Google Scholar 

  82. J. Wood, J. Garthwaite: Models of the diffusional spread of nitric oxide: Implications for neural nitric oxide signaling and its pharmacological properties, Neuropharmacology 33, 1235–1244 (1994)

    Article  Google Scholar 

  83. T.M. Dawson, S.N. Snyder: Gases as biological messengers: Nitric oxide and carbon monoxide in the brain, J. Neurosci. 14(9), 5147–5159 (1994)

    Google Scholar 

  84. J. Garthwaite, C.L. Boulton: Nitric oxide signaling in the central nervous system, Annu. Rev. Physiol. 57, 683–706 (1995)

    Article  Google Scholar 

  85. A.O. Philippides, P. Husbands, M. OʼShea: Four-dimensional neuronal signaling by nitric oxide: A computational analysis, J. Neurosci. 20(3), 1199–1207 (2000)

    Google Scholar 

  86. C. Hölscher: Nitric oxide, the enigmatic neuronal messenger: Its role in synaptic plasticity, Trends Neurosci. 20, 298–303 (1997)

    Article  Google Scholar 

  87. P. Husbands, T. Smith, N. Jakobi, M. OʼShea: Better living through chemistry: Evolving GasNets for robot control, Connect. Sci. 10(4), 185–210 (1998)

    Article  Google Scholar 

  88. T.M.C. Smith, P. Husbands, M. OʼShea: Local evolvability, neutrality, and search difficulty in evolutionary robotics, Biosystems 69, 223–243 (2003)

    Article  Google Scholar 

  89. A.O. Philippides, P. Husbands, T. Smith, M. OʼShea: Flexible couplings: Diffusing neuromodulators and adaptive robotics, Artif. Life 11(1-2), 139–160 (2005)

    Article  Google Scholar 

  90. A.O. Philippides, P. Husbands, T. Smith, M. OʼShea: Structure based models of NO diffusion in the nervous system. In: Computational Neuroscience: a Comprehensive Approach, ed. by J. Feng (Chapman Hall/CRC, Boca Raton 2004) pp. 97–130

    Google Scholar 

  91. A.O. Philippides, S.R. Ott, P. Husbands, T. Lovick, M. OʼShea: Modeling co-operative volume signaling in a plexus of nitric oxide synthase-expressing neurons, J. Neurosci. 25(28), 6520–6532 (2005)

    Article  Google Scholar 

  92. D. Barañano, C. Ferris, S. Snyder: A typical neural messenger, Trends Neurosci. 24(2), 99–106 (2001)

    Article  Google Scholar 

  93. T.M.C. Smith, P. Husbands, A. Philippides, M. OʼShea: Neuronal plasticity and temporal adaptivity: Gasnet robot control networks, Adapt. Behav. 10(3/4), 161–184 (2002)

    Google Scholar 

  94. S. Nolfi, D. Floreano: Learning and evolution, Auton. Robots 7, 89–113 (1999)

    Article  Google Scholar 

  95. S. Nolfi, D. Parisi: Learning to adapt to changing environments in evolving neural networks, Adapt. Behav. 1, 75–98 (1997)

    Google Scholar 

  96. J.M. Baldwin: A new factor in evolution, Am. Naturalist 30, 441–451 (1896)

    Article  Google Scholar 

  97. C.H. Waddington: Canalization of development and the inheritance of acquired characters, Nature 150, 563–565 (1942)

    Article  Google Scholar 

  98. G. Mayley: Landscapes, learning costs, and genetic assimilation, Evol. Comput. 4, 213–234 (1997)

    Article  Google Scholar 

  99. D. Floreano, F. Mondada: Evolution of plastic neurocontrollers for situated agents. In: From Animals to Animats 4: Proc. 4-th Int. Conf. Simul. Adapt. Behav, ed. by P. Maes, M. Matarić, J.A. Meyer, J. Pollack, H. Roitblat, S. Wilson (MIT Press-Bradford, Cambridge 1996) pp. 402–410

    Google Scholar 

  100. D. Floreano, J. Urzelai: Evolutionary robots with online self-organization and behavioral fitness, Neural Netw. 13, 431–443 (2000)

    Article  Google Scholar 

  101. D. Floreano, J. Urzelai: Neural morphogenesis, synaptic plasticity, and evolution, Theory Biosci. 120(3-4), 225–240 (2001)

    Google Scholar 

  102. E. Di Paolo: Evolving spike-timing-dependent plasticity for single-trial learning in robots, Philos. Trans. R. Soc. London A-361, 2299–2319 (2003)

    Article  Google Scholar 

  103. D. Floreano, S. Nolfi: Adaptive behavior in competing co-evolving species, Proc. 4-th Eur. Conf. Artif. Life, ed. by P. Husbands, I. Harvey (MIT Press, Cambridge 1997) pp. 378–387

    Google Scholar 

  104. Y.U. Cao, A.S. Fukunaga, A. Kahng: Cooperative mobile robotics: Antecedents and directions, Auton. Robots 4, 7–27 (1997)

    Article  Google Scholar 

  105. A. Perez-Uribe, D. Floreano, L. Keller: Effects of group composition and level of selection in the evolution of cooperation in artificial ants, Proc. 7-th Eur. Conf. Artif. Life (ECALʼ2003) (Springer, Berlin 2003) pp. 128–137

    Google Scholar 

  106. M. Waibel, D. Floreano, S. Magnenat, L. Keller: Division of labour and colony efficiency in social insects: effects of interactions between genetic architecture, colony kin structure and rate of perturbations, Proc. R. Soc. Ser. B, Vol. 273 (2006) pp. 1815–1823

    Google Scholar 

  107. G. Baldassarre, S. Nolfi, D. Parisi: Evolving mobile robots able to display collective behavior, Artif. Life 9, 255–267 (2003)

    Article  Google Scholar 

  108. G. Baldassarre, D. Parisi, S. Nolfi: Coordination and behavior integration in cooperating simulated robots, From Animals to Animats 8: Proc. 8-th Int. Conf. Simul. Adapt. Behav. (MIT Press, Cambridge 2003) pp. 385–394

    Google Scholar 

  109. M. Quinn, L. Smith, G. Mayley, P. Husbands: Evolving controllers for a homogeneous system of physical robots: Structured cooperation with minimal sensors, Philos. Trans. R. Soc. London A-361, 2321–2344 (2003)

    Article  MathSciNet  Google Scholar 

  110. M. Quinn: Evolving communication without dedicated communication channels, Proc. 6-th Eur. Conf. Artif. Life, ed. by J. Kelemen, P. Sosik (Springer, Berlin 2001) pp. 357–366

    Google Scholar 

  111. D. Marocco, S. Nolfi: Self-organization of communication in evolving robots, Proc. 10-th Int. Conf. Artif. Life, ed. by L. Rocha, L. Yeager, M. Bedau, D. Floreano, R. Goldstone, A. Vespignani (MIT Press, Cambridge 2006) pp. 178–184

    Google Scholar 

  112. F. Mondada, G. Pettinaro, A. Guignard, I. Kwee, D. Floreano, J.L. Deneubourg, S. Nolfi, L.M. Gambardella, M. Dorigo: Swarm-bot: A new distributed robotic concept, Auton. Robots 17, 193–221 (2004)

    Article  Google Scholar 

  113. V. Trianni, S. Nolfi, M. Dorigo: Cooperative hole-avoidance in a swarm-bot, Robot. Auton. Syst. 54, 97–103 (2006)

    Article  Google Scholar 

  114. A. Thompson: Evolving electronic robot controllers that exploit hardware resources. In: Advances in Artificial Life: Proc. 3-rd Eur. Conf. Artif. Life, Lecture Notes in Artificial Intelligence, Vol. 929, ed. by F. Moran, A. Moreno, J.J. Merelo, P. Chacon (Springer, Berlin 1995) pp. 640–656

    Google Scholar 

  115. A. Thompson: Hardware Evolution: Automatic Design of Electronic Circuits in Reconfigurable Hardware by Artificial Evolution, Distinguished Dissertation Series (Springer, Berlin 1998)

    Google Scholar 

  116. A. Thompson: Artificial evolution in the physical world. In: Evolutionary Robotics. From Intelligent Robots to Artificial Life (ERʼ97), ed. by T. Gomi (AAI Books, Kanata 1997) pp. 101–125

    Google Scholar 

  117. D. Keymeulen, M. Durantez, M. Konaka, Y. Kuniyoshi, T. Higuchi: An evolutionary robot navigation system using a gate-level evolvable hardware, Proc. 1-st Int. Conf. Evolvable Syst.: From Biology toHardware, LNCS, Vol. 1259, ed. by T. Higuchi (Springer, 1996) pp. 195–209

    Google Scholar 

  118. G. Ritter, J.-M. Puiatti, E. Sanchez: Leonardo and discipulus simplex: An autonomous, evolvable six-legged walking robot. In: Parallel and Distributed Processing, LNCS, Vol. 1586, ed. by J. Rolim (Springer, Puerto Rico 1999) pp. 688–696

    Chapter  Google Scholar 

  119. D. Roggen, D. Floreano, C. Mattiussi: A morphogenetic evolutionary system: Phylogenesis of the POETIC circuit, Proceedings of the Fifth International Conference on Evolvable Systems, ed. by A.M. Tyrrell, P.C. Haddow, J. Torresen (Springer, Heidelberg 2003) pp. 83–99

    Google Scholar 

  120. D. Roggen, S. Hofmann, Y. Thoma, D. Floreano: Hardware spiking neural network with run-time reconfigurable connectivity in an autonomous robot. In: NASA/DoD Conference on Evolvable Hardware, ed. by J. Lohn, R. Zebulum, J. Steincamp, D. Keymeulen, A. Stoica, M.I. Fergusonpages (IEEE Press, Los Alamitos 2003) pp. 189–198

    Chapter  Google Scholar 

  121. K. Sims: Evolving 3D morphology and behavior by competition, Proc. Artif. Life IV, ed. by R.A. Brooks, P. Maes (MIT Press, 1994) pp. 28–39

    Google Scholar 

  122. P. Funes, J. Pollack: Evolutionary body building: adaptive physical designs for robots, Artif. Life 4(4), 337–357 (1998)

    Article  Google Scholar 

  123. H.H. Lund, J. Hallam, W.P. Lee: Evolving robot morphology, Proc. IEEE 4-th Int. Conf. Evol. Comput. (IEEE Press, 1997) pp. 197–202

    Google Scholar 

  124. H. Lipson, J. Pollack: Automatic design and manufacture of robotic lifeforms, Nature 406, 974–978 (2000)

    Article  Google Scholar 

  125. R. Pfeifer, F. Iida, J. Bongard: New robotics: Design principles for intelligent systems, Artif. Life 11(1-2), 99–120 (2005)

    Article  Google Scholar 

  126. R. Pfeifer, C. Scheier: Understanding Intelligence (MIT Press, Cambridge 1999)

    Google Scholar 

  127. M. Matarić, D. Cliff: Challenges in evolving controllers for physical robots, Robot. Auton. Syst. 19(1), 67–83 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dario Floreano Prof , Phil Husbands Prof or Stefano Nolfi Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Floreano, D., Husbands, P., Nolfi, S. (2008). Evolutionary Robotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics