Skip to main content

Space Robots and Systems

  • Reference work entry
Springer Handbook of Robotics

Abstract

In the space community, any unmanned spacecraft can be called a robotic spacecraft. However, space robots are considered to be more capable devices that can facilitate manipulation, assembling, or servicing functions in orbit as assistants to astronauts, or to extend the areas and abilities of exploration on remote planets as surrogates for human explorers.

In this chapter, a concise digest of the historical overview and technical advances of two distinct types of space robotic systems, orbital robots and surface robots, is provided. In particular, Sect. 45.1 describes orbital robots, and Sect. 45.2 describes surface robots. In Sect. 45.3, the mathematical modeling of the dynamics and control using reference equations are discussed. Finally, advanced topics for future space exploration missions are addressed in Sect. 45.4.

Key issues in space robots and systems are characterized as follows. Manipulation – Although manipulation is a basic technology in robotics, microgravity in the orbital environment requires special attention to the motion dynamics of manipulator arms and objects being handled. Reaction dynamics that affect the base body, impact dynamics when the robotic hand contacts an object to be handled, and vibration dynamics due to structural flexibility are included in this issue. Mobility – The ability to locomote is particularly important in exploration robots (rovers) that travel on the surface of a remote planet. These surfaces are natural and rough, and thus challenging to traverse. Sensing and perception, traction mechanics, and vehicle dynamics, control, and navigation are all mobile robotics technologies that must be demonstrated in a natural untouched environment. Teleoperation and autonomy – There is a significant time delay between a robotic system at a work site and a human operator in an operation room on the Earth. In earlier orbital robotics demonstrations, the latency was typically 5 s, but can be several tens of minutes, or even hours for planetary missions. Telerobotics technology is therefore an indispensable ingredient in space robotics, and the introduction of autonomy is a reasonable consequence. Extreme environments – In addition to the microgravity environment that affects the manipulator dynamics or the natural and rough terrain that affects surface mobility, there are a number of issues related to extreme space environments that are challenging and must be solved in order to enable practical engineering applications. Such issues include extremely high or low temperatures, high vacuum or high pressure, corrosive atmospheres, ionizing radiation, and very fine dust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARAMIS:

Space Application of Automation, Robotics and Machine Intelligence

ASTRO:

autonomous space transport robotic operations

CARD:

computer-aided remote driving

DARPA:

Defense Advanced Research Projects Agency

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

DOF:

degree of freedom

ECU:

electronics controller unit

ERA:

European robotic arm

ESA:

European Space Agency

ETS:

engineering test satellite

EVA:

extravehicular activity

GEO:

geostationary Earth orbit

GJM:

generalized Jacobian matrix

HST:

Hubble space telescope

ISS:

input-to-state stability

JAXA:

Japan space exploration agency

JEMRMS:

Japanese experiment module remote manipulator system

JPL:

Jet Propulsion Laboratory

LAAS:

Laboratoire dʼAnalyse et dʼArchitecture des Systèmes

MBS:

mobile base system

MER:

Mars exploration rovers

MESUR:

Mars environmental survey

MPM:

manipulator positioning mechanism

MRL:

manipulator retention latch

MRSR:

Mars rover sample return

NASA:

National Aeronautics and Space Agency

NASDA:

National Space Development Agency of Japan

OBSS:

orbiter boom sensor system

ORU:

orbital replacement unit

PDGF:

power data grapple fixtures

RC:

radio-controlled

RNS:

reaction null space

ROKVISS:

robotic components verification on the ISS

ROTEX:

robot technology experiment

RWS:

robotic work station

SAIC:

Science Applications International, Inc.

SAN:

semiautonomous navigation

SEE:

standard end-effector

SLRV:

surveyor lunar rover vehicle

SPDM:

special-purpose dexterous manipulator

SRMS:

shuttle remote manipulator system

STS:

superior temporal sulcus

SVD:

singular value decomposition

US:

ultrasound

VM:

virtual manipulator

References

  1. D. L. Akin, M. L. Minsky, E. D. Thiel, C. R. Curtzman: Space applications of automation, robotics and machine intelligence systems (ARAMIS) phase II, NASA-CR-3734–3736 (1983)

    Google Scholar 

  2. C.G. Wagner–Bartak, J.A. Middleton, J.A. Hunter: Shuttle remote manipulator system hardware test facility, 11th Space Simulation Conf. (1980) pp. 79–94, NASA CP-2150

    Google Scholar 

  3. S. Greaves, K. Boyle, N. Doshewnek: Orbiter boom sensor system and shuttle return to flight: operations analyses, AIAA Guidance Navigation Contr. Conf. Exhibit (San Francisco 2005) p. 5986

    Google Scholar 

  4. C. Crane, J. Duffy, T. Carnahan: A kinematic analysis of the space station remote manipulator system (SSRMS), J. Robot. Syst. 8, 637–658 (1991)

    Article  MATH  Google Scholar 

  5. M.F. Stieber, C.P. Trudel, D.G. Hunter: Robotic systems for the international space station, Proc. 1997 IEEE Int. Conf. Robot. Autom. (1997) pp. 3068–3073

    Google Scholar 

  6. D. Bassett, A. Abramovici: Special purpose dexterous manipulator (SPDM) requirements verification, Proc. 5th Int. Symp. Artif. Intell. Robot. Autom. Space (1999) pp. 43–48, ESA SP-440

    Google Scholar 

  7. R. Boumans, C. Heemskerk: The european robotic arm for the international space station, Robot. Auton. Syst. 23(1), 17–27 (1998)

    Article  Google Scholar 

  8. P. Laryssa, E. Lindsay, O. Layi, O. Marius, K. Nara, L. Aris, T. Ed: International space station robotics: a comparative study of ERA, JEMRMS and MSS, Proc. 7th ESA Workshop Adv. Space Technol. Robot. Autom. ASTRA (ESTEC, Noordwijk 2002)

    Google Scholar 

  9. C. Preusche, D. Reintsema, K. Landzettel, G. Hirzinger: Robotics component verification on iss rokviss – preliminary results for telepresence, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (Beijing 2006) pp. 4595–4601

    Google Scholar 

  10. K. Landzettel, A. Albu-Schaffer, C. Preusche, D. Reintsema, B. Rebele: G. Hirzinger: Robotic on-orbit servicing – dlrʼs experience and perspective, Proc. of IEEE/RSJ Int. Conf. Intell. Robot. Syst. (Beijing 2006) pp. 4587–4594

    Google Scholar 

  11. T. Matsueda, K. Kuraoka, K. Goma, T. Sumi, R. Okamura: JEMRMS system design and development status, Proc. IEEE National Telesyst. Conf. (1991) pp. 391–395

    Google Scholar 

  12. S. Doi, Y. Wakabayashi, T. Matsuda, N. Satoh: JEM remote manipulator system, J. Aeronaut. Space Sci. Japan 50(576), 7–14 (2002)

    Article  Google Scholar 

  13. H. Morimoto, N. Satoh, Y. Wakabayashi, M. Hayashi, Y. Aiko: Performance of Japanese robotic arms of the international space station, 15th IFAC World Congress (2002)

    Google Scholar 

  14. G. Hirzinger, B. Brunner, J. Dietrich, J. Heindl: Sensor-based space robotics-ROTEX and its telerobotic features, IEEE Trans. Robot. Autom. 9(5), 649–663 (1993)

    Article  Google Scholar 

  15. M. Oda et al.: ETS-VII, space robot in-orbit experiment satellite, Proc. 1996 IEEE Int. Conf. Robot. Autom. (1996) pp. 739–744

    Google Scholar 

  16. K. Yoshida: Engineering test satellite vii flight experiments for space robot dynamics and control: theories on laboratory test beds ten years ago, now in orbit, Int. J. Robot. Res. 22(5), 321–335 (2003)

    Article  Google Scholar 

  17. K. Landzettel, B. Brunner, G. Hirzinger, R. Lampariello, G. Schreiber, B.-M. Steinmetz: A unified ground control and programming methodology for space robotics applications – demonstrations on ETS-VII, Proc. Int. Symp. Robot. (Montreal 2000) pp. 422–427

    Google Scholar 

  18. J.C. Parrish, D.L. Akin, G.G. Gefke: The ranger telerobotic shuttle experiment: implications for operational EVA/robotic cooperation, Proc. SAE Int. Conf. Environmental Syst. (Toulouse 2000)

    Google Scholar 

  19. J. Shoemaker, M. Wright: Orbital express space operations architecture program. Space systems technology and operations, Proc. SPIE, Vol. 5088, ed. by P. Tchoryk Jr., J. Shoemaker, (2003) pp. 1–9

    Google Scholar 

  20. A.P. Vinogradov: Lunokhod 1 Mobile Lunar Laboratory (JPRS, Moscow 1971), JPRS identification number 54525

    Google Scholar 

  21. A. Mishkin: Sojourner: An Insiderʼs View of the Mars Pathfinder Mission (Berkley Books, New York 2004)

    Google Scholar 

  22. B. Wilcox, T. Nguyen: Sojourner on mars and lessons learned for future planetary rovers, 28th Int. Conf. Env. Syst. (Danvers 1998)

    Google Scholar 

  23. M. Maimone, A. Johnson, Y. Cheng, R. Willson, L. Matthies: Autonomous navigation results from the Mars exploration rover (MER) mission, Proc. 9th Int. Symp. Experimental Robot. (ISER) (Singapore 2004)

    Google Scholar 

  24. M. Maimone, Y. Cheng, L. Matthies: Two years of visual odometry on the Mars exploration rovers, J. Field Robot. 24(3), 169–186 (2007)

    Article  Google Scholar 

  25. M.G. Bekker: Off-The-Road Locomotion (Univ. Michigan Press, East Lausing 1960)

    Google Scholar 

  26. M.G. Bekker: Introduction to Terrain-Vehicle Systems (Univ Michigan Press, East Lausing 1960)

    Google Scholar 

  27. R.A. Lewis, A.K. Bejczy: Planning considerations for a roving robot with arm, IJCAI (1973) pp. 308–316

    Google Scholar 

  28. A. Thompson: The navigation system of the JPL robot, IJCAI (1977) pp. 749–757

    Google Scholar 

  29. E. J. M. West, W. Trautwein: Operational Loopwheel Suspension Systems for Mars Rover Demonstration Model Loopwheel failure report. Document LMSC-HREC TR D568859, (Huntsville Research & Engineering Center, Huntsville 1979) Available at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790011992_1979011992.pdf

    Google Scholar 

  30. Y. Yakimovsky, R.T. Cunningham: A system for extracting three-dimensional measurements from a stereo pair of TV cameras, Comp. Graph. Image Proc. 7, 195–210 (1978)

    Article  Google Scholar 

  31. E. Krotkov, J. Bares, T. Kanade, T. Mitchell, R. Simmons, W. Whittaker: Ambler: a six-legged planetary rover, 5th Int. Conf. Adv. Robot. 1991 Robots Unstructured Env., Vol. 1 (1991) pp. 717–722

    Google Scholar 

  32. J. Bares, W. Whittaker: Walking robot with a circulating gait, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. Towards New Frontier Appl. (IROS ʼ90), Vol. 2 (1990) pp. 809–816

    Google Scholar 

  33. B. Wilcox, D. Gennery: A Mars rover for the 1990s, J. Br. Interplanet. Soc. 40, 484–488 (1987)

    Google Scholar 

  34. B. Wilcox, L. Matthies, D. Gennery: Robotic vehicles for planetary exploration, Proc. Int. Conf. Robot. Autom. (Nice 1992)

    Google Scholar 

  35. D. Gennery, T. Litwin, B. Wilcox, B. Bon: Sensing and perception research for space telerobotics at JPL, IEEE Int. Conf. Robot. Autom. (Raleigh 1987) pp. 311–317

    Google Scholar 

  36. J. Balaram, S. Hayati: A supervisory telerobotics testbed for unstructured environments, J. Robot. Syst. 9(2), 261–280 (1992)

    Article  Google Scholar 

  37. G. Giralt, L. Boissier: The French planetary rover VAP: concept and current developments, IEEE Int. Conf. Intell. Robot. Syst. (IROSʼ92) (Raleigh 1992) pp. 1391–1398, , LAAS Report No. 92227

    Google Scholar 

  38. R. Chatila, S. Lacroiz, G. Giralt: A case study in machine intelligence: adaptive autonomous space rovers, Int. Conf. Field Service Robot. (FSRʼ97) (Canberra 1997) pp. 101–108, LAAS Report No. 97463

    Google Scholar 

  39. A. Castano, A. Fukunaga, J. Biesiadecki, L. Neakrase, P. Whelley, R. Greeley, M. Lemmon, R. Castano, S. Chien: Autonomous detection of dust devils and clouds on Mars, Proc. IEEE Int. Conf. Image Proc. (Atlanta 2006) pp. 2765–2768

    Google Scholar 

  40. L. Matthies: Stereo vision for planetary rovers: stochastic modeling to near real-time implementation, Int. J. Comp. Vision 8(1), 71–91 (1992)

    Article  MathSciNet  Google Scholar 

  41. K. Yoshida, D.N. Nenchev, M. Uchiyama: Moving base robotics and reaction management control, Robot. Res.: 7th Int. Symp., ed. by G. Giralt, G. Hirzinger (Springer, New York 1996) pp. 101–109

    Google Scholar 

  42. J. Russakow, S.M. Rock, O. Khatib: An operational space formulation for a free-flying multi-arm space robot, 4th Int. Symp. Exp. Robot. (1995) pp. 448–457

    Google Scholar 

  43. Y. Umetani, K. Yoshida: Continuous path control of space manipulators mounted on OMV, Acta Astro. 15(12), 981–986 (1987), presented at the 37th IAF Conf, Oct. 1986

    Article  MATH  Google Scholar 

  44. Y. Umetani, K. Yoshida: Resolved motion rate control of space manipulators with generalized jacobian matrix, IEEE Trans. Robot. Autom. 5(3), 303–314 (1989)

    Article  Google Scholar 

  45. Y. Xu, T. Kanade (eds.): Space Robotics: Dynamics and Control (Kluwer Academic, Boston 1993)

    Google Scholar 

  46. K. Yoshida: Impact dynamics representation and control with extended inversed inertia tensor for space manipulators, Robot. Res. 6th Int. Symp., ed. by T. Kanade, R. Paul (1994) pp. 453–463

    Google Scholar 

  47. K. Yoshida: Experimental study on the dynamics and control of a space robot with the experimental free-floating robot satellite (EFFORTS) simulators, Adv. Robot. 9(6), 583–602 (1995)

    Article  Google Scholar 

  48. Y. Nakamura, R. Mukherjee: Nonholonomic path planning of space robots via a bidirectional approach, IEEE Trans. Robot. Autom. 7(4), 500–514 (1991)

    Article  Google Scholar 

  49. S. Dubowsky, M. Torres: Minimizing attitude control fuel in space manipulator systems, Proc. Int. Symp. AI Robot. Autom. (i-SAIRAS) (1990) pp. 259–262

    Google Scholar 

  50. S. Dubowsky, M. Torres: Path planning for space manipulators to minimize spacecraft attitude disturbances, Proc. IEEE Int. Conf. Robot. Autom., Vol. 3 (Sacramento 1991) pp. 2522–2528

    Google Scholar 

  51. K. Yoshida: Practical coordination control between satellite attitude and manipulator reaction dynamics based on computed momentum concept, Proc. 1994 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (Munich 1994) pp. 1578–1585

    Google Scholar 

  52. M. Oda: Coordinated control of spacecraft attitude and its manipulator, Proc. 1996 IEEE Int. Conf. Robot. Autom. (1996) pp. 732–738

    Google Scholar 

  53. Z. Vafa, S. Dubowsky: On the dynamics of manipulators in space using the virtual manipulator approach, Proc. IEEE Int. Conf. Robot. Autom. (1987) pp. 579–585

    Google Scholar 

  54. E. Papadopoulos, S. Dubowsky: Dynamic singularities in the control of free-floating space manipulators, ASME J. Dyn. Syst. Meas. Contr. 115(1), 44–52 (1993)

    Article  Google Scholar 

  55. Y. Umetani, K. Yoshida: Workspace and manipulability analysis of space manipulator, Trans. Soc. Instrum. Contr. Eng. E-1(1), 116–123 (2001)

    Google Scholar 

  56. D.N. Nenchev, Y. Umetani, K. Yoshida: Analysis of a redundant free-flying spacecraft/manipulator system, IEEE Trans. Robot. Autom. 8(1), 1–6 (1992)

    Article  Google Scholar 

  57. D.N. Nenchev, K. Yoshida, P. Vichitkulsawat, M. Uchiyama: Reaction null-space control of flexible structure mounted manipulator systems, IEEE Trans. Robot. Autom. 15(6), 1011–1023 (1999)

    Article  Google Scholar 

  58. D.N. Nenchev, K. Yoshida, M. Uchiyama: Reaction null-space based control of flexible structure mounted manipulator systems, Proc. IEEE 35th CDC (1996) pp. 4118–4123

    Google Scholar 

  59. W.J. Book, S.H. Lee: Vibration control of a large flexible manipulator by a small robotic arm, Proc. Am. Contr. Conf. (Pittsburgh 1989)

    Google Scholar 

  60. M.A. Torres: Modelling, path-planning and control of space manipulators: the coupling map concept. Ph.D. Thesis (MIT, Cambridge 1993)

    Google Scholar 

  61. S. Abiko, K. Yoshida: An effective control strategy of japanese experimental module remote manipulator system (JEMRMS) using coupled and un-coupled dynamics, Proc. 7th Int. Symp. Artif. Intell. Robot. Autom. Space Paper AS18 (CD-ROM) (Nara 2003)

    Google Scholar 

  62. S. Abiko: Dynamics and Control for a Macro-Micro Manipulator System Mounted on the International Space Station. Ph.D. Thesis (Tohoku University, Sendai 2005)

    Google Scholar 

  63. S. Abiko, K. Yoshida: On-line parameter identification of a payload handled by flexible based manipulator, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROSʼ04) (Sendai 2004) pp. 2930–2935

    Google Scholar 

  64. S. Abiko, K. Yoshida: An adaptive control of a space manipulator for vibration suppression, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROSʼ05) (Edmonton 2005)

    Google Scholar 

  65. G. Gilardi, I. Shraf: Literature survey of contact dynamics modeling, Mech. Machine Theory 37, 1213–1239 (2002)

    Article  MATH  Google Scholar 

  66. K. Yoshida, H. Nakanishi, H. Ueno, N. Inaba, T. Nishimaki, M. Oda: Dynamics, control, and impedance matching for robotic capture of a non-cooperative satellite, Adv. Robot. 18(2), 175–198 (2004)

    Article  Google Scholar 

  67. H. Nakanishi, K. Yoshida: Impedance control of free-flying space robot for orbital servicing, J. Robot. Mechatron. 18(5), 608–617 (2006)

    Google Scholar 

  68. P.M. Pathak, A. Mukherjee, A. DasGupta: Impedance control of space robots using passive degrees of freedom in controller domain, J. Dyn. Syst. Meas. Contr. 127, 564–578 (2006)

    Article  Google Scholar 

  69. S. Abiko, R. Lampariello, G. Hirzinger: Impedance control for a free-floating robot in the grasping of a tumbling target with parameter uncertainty, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS 06) (Beijing 2006)

    Google Scholar 

  70. K. Iagnemma, H. Shibly, S. Dubowsky: On-Line traction parameter estimation for planetary rovers, Proc. IEEE Int. Conf. Robot. Autom. (ICRA `02) (Washington 2002)

    Google Scholar 

  71. K. Yoshida, H. Hamano: Motion dynamics of a rover with slip-based traction model, Proc. IEEE Int. Conf. Robot. Autom. (ICRA `02) (Washington 2002)

    Google Scholar 

  72. A. Jain, J. Guineau, C. Lim, W. Lincoln, M. Pomerantz, G. Sohl, R. Steele: Roams: planetary surface rover simulation environment, Proc. 7th Int. Symp. Artif. Intell. Robot. Autom. Space (iSAIRAS `03) (Nara 2003)

    Google Scholar 

  73. K. Yoshida, G. Ishigami: Steering characteristics of a rigid wheel for explaration on loose soil, Proc. IEEE Int. Conf. Intell. Robot. Syst. (IROS `04) (Sendai 2004)

    Google Scholar 

  74. R. Bauer, W. Leung, T. Barfoot: Experimental and simulation results of wheel-soil interaction for planetary rovers, Proc. IEEE Int. Conf. Intell. Robot. Syst. (IROS `05) (Edomonton 2005)

    Google Scholar 

  75. G. Ishigami, K. Yoshida: Steering characteristics of an exploration rover on loose soil based on all-wheel dynamics model, Proc. IEEE Int. Conf. Intell. Robot. Syst. (IROS `05) (Edomonton 2005)

    Google Scholar 

  76. A. Ellery, N. Patel, R. Bertrand, J. Dalcomo: Exomars rover chassis analysis and design, Proc. 8th Int. Symp. Artif. Intell. Robot. Autom. Space (iSAIRAS `05) (Munich 2005)

    Google Scholar 

  77. A. Gibbesch, B. Schäfer: Multibody system modelling and simulation of planetary rover mobility on soft terrain, Proc. 8th Int. Symp. Artif. Intell. Robot. Autom. Space (iSAIRAS `05) (Munich 2005)

    Google Scholar 

  78. G. Ishigami, A. Miwa, K. Nagatani, K. Yoshida: Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil, J. Field Robot. 24(3), 233–250 (2007)

    Article  Google Scholar 

  79. J.Y. Wong: Theory of Ground Vehicles (Wiley, New York 1978)

    Google Scholar 

  80. K. Iagnemma, S. Dubowsky: Mobile Robots in Rough Terrain: Estimation, Motion Planning, and Control With Application to Planetary Rovers, Springer Tracts in Advanced Robotics, Vol. 12 (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  81. K. Yoshida, T. Watanabe, N. Mizuno, G. Ishigami: Terramechanics-based analysis and traction control of a lunar/planetary rover, Proc. Int. Conf. Field Service Robot. (FSR `03) (Yamanashi 2003)

    Google Scholar 

  82. J.Y. Wong, A.R. Reece: Prediction of rigid wheel preformance based on the analysis of soil-wheel stresses. Part I, preformance of driven rigid wheels, J. Terramechan. 4, 81–98 (1967)

    Article  Google Scholar 

  83. Z. Janosi, B. Hanamoto: The analytical determination of drawbar pull as a function of slip for tracked vehicle in deformable soils, Proc 1st Int. Conf. Terrain-Vehicle Syst. (Torino 1961)

    Google Scholar 

  84. E. Hegedus: A simplified method for the determination of bulldozing resistance, Land Locomotion Research Laboratory, Army Tank Automotive Command Report, Vol. 61, 1960

    Google Scholar 

  85. I. Rekleitis, E. Martin, G. Rouleau, R. LʼArcheveque, K. Parsa, E. Dupuis: Autonomous capture of a tumbling satellite, J. Field Robot. 24(4), 275–296 (2007)

    Article  Google Scholar 

  86. R. Ambrose: http://robonaut.jsc.nasa.gov/ Jan (2008)

    Google Scholar 

  87. J. Blamont: Balloons on other planets, Adv. Space Res. 1, 63–69 (1981)

    Article  Google Scholar 

  88. J.A. Cutts, K.T. Nock, J.A. Jones, G. Rodriguez, J. Balaram, G.E. Powell, S.P. Synott: Aerovehicles for planetary exploration, IEEE Int. Conf. Robot. Autom. (Nagoya 1995)

    Google Scholar 

  89. M.K. Heun, J.A. Jones, J.L. Hall: Gondola design for Venus deep-atmosphere aerobot operations, AIAA, 36th Aerospace Sci. Meeting Exhibit, 1998 ASME Wind Energy Symp. (Reno 1998)

    Google Scholar 

  90. S. Miller, J. Essmiller, D. Beaty: Mars deep drill – a mission concept for the next decade, Space Conf. Exhibit (San Diego 2004) pp. 2004–6048, , AIAA

    Google Scholar 

  91. S. Mukherjee, P. Bartlett, B. Glass, J. Guerrero, S. Stanley: Technologies for exploring the martian subsurface, IEEE Aerospace Conf. Proc. (Big Sky 2006), No. 1349

    Google Scholar 

  92. S.B. Skaar: Teleoperation and robotics in space. In: Progress in Astronautics and Aeronautics Series, ed. by C.F. Ruoff (AIAA Technology and Industrial Arts, Notre Dame 1994), ISBN 1563470950

    Google Scholar 

  93. G. F. Bekey: Assessment of international research and development in robotics a study report of the national science foundation/NASA study, available at http://www.wtec.org/robotics/ (soon to be published in book form from World Scientific Publishing in Singapore).

    Google Scholar 

  94. Assessment of Options for Extending the Life of the Hubble Space Telescope, National Research Council: Final Report, (National Academies Press, 2005) ISBN-10: 0-309-09530-1, ISBN-13: 978-0-309-09530-3

    Google Scholar 

  95. A.M. Howard, E.W. Tunstel: Intelligence for Space Robotics (TSI Press, San Antonio 2006), ISBN 1-889335-26-6/1-889335-29-0.

    Google Scholar 

  96. T.B. Sheridan: Space teleoperation through time delay: review and prognosis, IEEE Trans. Robot. Autom. 9(5), 592–606 (1993)

    Article  Google Scholar 

  97. J. Field Robot. Special Issue on Space Robotics, Part I–Part III, 24(3–5), 167–434 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazuya Yoshida Prof or Brian Wilcox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Yoshida, K., Wilcox, B. (2008). Space Robots and Systems. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics