Skip to main content

Optima, Extrema, and Artificial Immune Systems

  • Conference paper
Artificial Immune Systems (ICARIS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3239))

Included in the following conference series:

Abstract

We review various problems of extremization that arise in the calculus of variations, with wide-ranging applications in mathematics, physics and biology. Euler-Lagrange equations come from the extremum of an action functional, and we reformulate this as an optimization problem. Hence the task of solving systems of differential equations can be recast as the problem of finding the minimum of a suitable quantity, which is appropriate for the application of artificial immune system (AIS) algorithms. We also show how the problem of finding roots of polynomial functions is naturally viewed as another minimization problem. In numerical analysis, the Newton-Raphson method is the standard approach to this problem, and the basins of attractions for each root have a fractal structure. Preliminary investigations using the B-Cell Algorithm (BCA) introduced by Kelsey and Timmis suggest that the behaviour of AIS algorithms themselves can display fractal structure, which may be analyzed with dynamical systems techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailin, D., Love, A.: Introduction to Gauge Field Theory. Adam Hilger (1986)

    Google Scholar 

  2. Beeson, D.: Maupertuis: an intellectual biography. Voltaire Foundation, Taylor Institution. Alden Press, Oxford (1992)

    Google Scholar 

  3. Budd, C.J., Iserles, A. (eds.): Geometric integration: numerical solution of differential equations on manifolds. Phil. Trans. R. Soc. Lond. A 357, 943–1133 (1999)

    Google Scholar 

  4. Choquet-Bruhat, Y.: Géométrie différentielle et systèmes extérieurs. Dunod, Paris (1968)

    Google Scholar 

  5. de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)

    Google Scholar 

  6. Cutello, V., Nicosia, G.: An Immunological Approach to Combinatorial Optimization Problems. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 361–370. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  8. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice-Hall, Englewood Cliffs (1963)

    Google Scholar 

  9. Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1950)

    Google Scholar 

  10. Hone, A., Kelsey, J., Timmis, J.: Chasing Chaos. In: Sarker, R., et al. (eds.) Proceedings of the Congress on Evolutionary Computation, Canberra, Australia, pp. 413–419. IEEE, Los Alamitos (2003)

    Google Scholar 

  11. Hone, A.: Extremum principles. In: Scott, A. (ed.) Encyclopedia of Nonlinear Science, Fitzroy Dearborn, Routledge (2004) (in press), http://www.routledge-ny.com/nonlinearsci/

    Google Scholar 

  12. Postcript image of BCA applied to z3 − 1 = 0, downloadable at http://www.kent.ac.uk/ims/publications/documents/banyan1.ps (scroll image to bottom of window)

  13. Kelsey, J., Timmis, J.: Immune Inspired Somatic Contiguous Hypermutation for Function Optimisation. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 207–218. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Kelsey, J.: An Immune System-Inspired Function Optimisation Algorithm, MSc thesis, University of Kent (2004)

    Google Scholar 

  15. Kenway, R.D.: Particles from scratch: the hadron spectrum from lattice gauge theory. Contemporary Physics 31, 325–333 (1990)

    Article  Google Scholar 

  16. Kirk, D.E.: Optimal Control Theory - An Introduction. Prentice Hall Inc., Englewood Cliffs (1997)

    Google Scholar 

  17. Kline, M., Kay, I.W.: Electromagnetic Theory and Geometrical Optics. Interscience Publishers, John Wiley & Son, New York (1965)

    MATH  Google Scholar 

  18. Kol, A., Laird, B., Leimkuhler, B.: A symplectic method for rigid-body molecular simulation. J. Chem. Phys. 107, 2580–2588 (1997)

    Article  Google Scholar 

  19. Meade, A.J., Sonneborn, H.C.: Numerical solution of a calculus of variations problem using the feedforward neural network architecture. Advances in Engineering Software 27, 213–225 (1996)

    Article  Google Scholar 

  20. Morse, M., Cairns, S.S.: Critical Point Theory in Global Analysis and Differential Topology. Academic Press, New York (1969)

    MATH  Google Scholar 

  21. Narain, P.: On an extremum principle in the genetical theory of natural selection. Journal of Genetics 72, 59–71 (1993)

    Article  Google Scholar 

  22. Nash, J.: Non-Cooperative Games. Annals of Mathematics 54, 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  23. Nicosia, G.: Combinatorial Landscapes, Immune Algorithms and Protein Structure Prediction Problem. Poster at Mathematical and Statistical Aspects of Molecular Biology (MASAMB XIV) at Isaac Newton Institute, Cambridge (March 2004)

    Google Scholar 

  24. Owen, G.: Game Theory, 2nd edn. Academic Press, London (1982)

    MATH  Google Scholar 

  25. Peitgen, H.-O., Richter, D.H.: The Beauty of Fractals: Images of Complex Dynamical Systems. Springer, Heidelberg (1986)

    MATH  Google Scholar 

  26. Perelson, A.S., Weisbuch, G.: Immunology for physicists. Rev. Modern Phys. 69, 1219–1267 (1997)

    Article  Google Scholar 

  27. Prestipino, S., Giaquinta, P.V.: The concavity of entropy and extremum principles in thermodynamics. Journal of Statistical Physics 111, 479–493 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tarakanov, A.O., Skormin, V.A., Sokolova, S.P.: Immunocomputing: Principles and Applications. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  29. Timmis, J., Bentley, P., Hart, E. (eds.): ICARIS 2003. LNCS, vol. 2787. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  30. Velasco, S., Fernandez-Pineda, C.: A simple example illustrating the application of thermodynamic extremum principles. European Journal of Physics 23, 501–511 (2002)

    Article  MATH  Google Scholar 

  31. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour. Princeton University Press, New Jersey (1947)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hone, A., Kelsey, J. (2004). Optima, Extrema, and Artificial Immune Systems. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds) Artificial Immune Systems. ICARIS 2004. Lecture Notes in Computer Science, vol 3239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30220-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30220-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23097-7

  • Online ISBN: 978-3-540-30220-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics