Skip to main content

Evolving Dynamics in an Artificial Regulatory Network Model

  • Conference paper
Parallel Problem Solving from Nature - PPSN VIII (PPSN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3242))

Included in the following conference series:

Abstract

In this paper artificial regulatory networks (ARN) are evolved to match the dynamics of test functions. The ARNs are based on a genome representation generated by a duplication / divergence process. By creating a mapping between the protein concentrations created by gene excitation and inhibition to an output function, the network can be evolved to match output functions such as sinusoids, exponentials and sigmoids. This shows that the dynamics of an ARN may be evolved and thus may be suitable as a method for generating arbitrary time-series for function optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hood, L., Galas, D.: The digital code of DNA. Nature 421(6921), 444–448 (2003)

    Article  Google Scholar 

  2. Neidhardt, F.C.: Escherichia Coli and Salmonella Typhimurium. ASM Press, Washington (1996)

    Google Scholar 

  3. Thomas, G.H.: Completing the E.Coli proteome: a database of gene products characterised since completion of the genome sequence. Bioinformatics 15(10), 860–861 (1999)

    Article  Google Scholar 

  4. Banzhaf, W.: On the dynamics of an artificial regulatory network. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 217–227. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Banzhaf, W.: Artificial regulatory networks and genetic programming. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and Practice, pp. 43–62. Kluwer, Dordrecht (2003)

    Google Scholar 

  6. Kuo, P.D., Banzhaf, W.: Scale-free and small world network topologies in an artificial regulatory network model. In: Ninth International Conference on the Simulation and Synthesis of Living Systems (ALIFE) (2004) (in press)

    Google Scholar 

  7. Banzhaf, W., Kuo, P.D.: Network motifs in artificial and natural transcriptional regulatory networks. Journal of Biological Physics and Chemistry (2004) (in submission)

    Google Scholar 

  8. Watson, J., Wiles, J., Hanan, J.: Towards more relevant evolutionary models: Integrating an artificial genome with a developmental phenotype. In: Proceedings of the Australian Conference on Artificial Life (ACAL), pp. 288–298 (2003)

    Google Scholar 

  9. Hallinan, J., Wiles, J.: Evolving genetic regulatory networks using an artificial genome. In: Chen, Y.P.P. (ed.) Second Asia-Pacific Bioinformatics Conference (APBC 2004), Dunedin, New Zealand. CRPIT, vol. 29, pp. 291–296. ACS (2004)

    Google Scholar 

  10. Bongard, J.: Evolving modular genetic regulatory networks. In: Proceedings of the IEEE 2002 Congress on Evolutionary Computation, pp. 1872–1877. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  11. Hotz, P.E.: Genome-physics as a new concept to reduce the number of genetic parameters in artificial evolution. In: Proceedings of the IEEE 2003 Congress on Evolutionary Computation, pp. 191–198. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  12. Willadsen, K., Wiles, J.: Dynamics of gene expression in an artificial genome. In: Proceedings of the IEEE 2003 Congress on Evolutionary Computation, pp. 199–206. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  13. Reil, T.: Dynamics of gene expression in an artificial genome: Implications for biological and artificial ontogeny. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 457–466. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Bongard, J.C., Pfeifer, R.: Evolving complete agents using artificial ontogeny. In: Hara, F., Pfeifer, R. (eds.) Morpho-functional Machines: The New Species (Designing Embodied Intelligence), pp. 237–258. Springer, Heidelberg (2003)

    Google Scholar 

  15. Augustsson, P., Wolff, K., Nordin, P.: Creation of a learning, flying robot by means of evolution. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1279–1285. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  16. Dittrich, P., Burgel, A., Banzhaf, W.: Learning to move a robot with random morphology. In: Husbands, P. (ed.) EvoROB/EvoRobot 1998. LNCS, vol. 1468, pp. 165–178. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  17. Cao, H., Kang, L., Chen, Y., Yu, J.: Evolutionary modeling of systems of ordinary differential equations with genetic programming. Genetic Programming and Evolvable Machines 1(4), 309–337 (2000)

    Article  MATH  Google Scholar 

  18. Kargupta, H., Ghosh, S.: Toward machine learning through genetic code-like transformations. Genetic Programming and Evolvable Machines 3(3), 231–258 (2002)

    Article  MATH  Google Scholar 

  19. Kargupta, H.: The gene expression messy genetic algorithm. In: Proceedings of the IEEE 1996 Congress on Evolutionary Computation, pp. 814–819. IEEE Press, Los Alamitos (1996)

    Chapter  Google Scholar 

  20. Eggenberger, P.: Evolving morphologies of simulated 3d organisms based on differential gene expression. In: Harvey, I., Husbands, P. (eds.) Proceedings of the 4th European Conference on Artificial Life (ECAL), pp. 205–213. MIT Press, Cambridge (1997)

    Google Scholar 

  21. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis and first results. Complex Systems 3(5), 493–530 (1989)

    MATH  MathSciNet  Google Scholar 

  22. Yoshida, Y., Adachi, N.: A diploid genetic algorithm for preserving population diversity – pseudo-meiosis GA. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 36–45. Springer, Heidelberg (1994)

    Google Scholar 

  23. Wolfe, K., Shields, D.: Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387(6634), 708–713 (1997)

    Article  Google Scholar 

  24. Beyer, H.G., Schwefel, H.P.: Evolution strategies: A comprehensive introduction. Natural Computing 1(1), 3–52 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yu, T., Miller, J.: Neutrality and the evolvability of boolean function landscapes. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 204–217. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuo, P.D., Leier, A., Banzhaf, W. (2004). Evolving Dynamics in an Artificial Regulatory Network Model. In: Yao, X., et al. Parallel Problem Solving from Nature - PPSN VIII. PPSN 2004. Lecture Notes in Computer Science, vol 3242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30217-9_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30217-9_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23092-2

  • Online ISBN: 978-3-540-30217-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics