Skip to main content

Maximum a Posteriori Tree Augmented Naive Bayes Classifiers

  • Conference paper
Discovery Science (DS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3245))

Included in the following conference series:

Abstract

Bayesian classifiers such as Naive Bayes or Tree Augmented Naive Bayes (TAN) have shown excellent performance given their simplicity and heavy underlying independence assumptions. In this paper we prove that under suitable conditions it is possible to efficiently compute the maximum a posterior TAN model. Furthermore, we prove that it is also possible to efficiently calculate a weighted set with the k maximum a posteriori TAN models. This allows efficient TAN ensemble learning and accounting for model uncertainty. These results can be used to construct two classifiers. Both classifiers have the advantage of allowing the introduction of prior knowledge about structure or parameters into the learning process. Empirical results show that both classifiers lead to an improvement in error rate and accuracy of the predicted class probabilities over established TAN based classifiers with equivalent complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blake, C., Keogh, E., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  2. Cerquides, J.: Applying General Bayesian Techniques to Improve TAN Induction. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, KDD 1999 (1999)

    Google Scholar 

  3. Cerquides, J.: Improving Bayesian network classifiers. PhD thesis, Technical University of Catalonia (2003)

    Google Scholar 

  4. Cerquides, J., de Màntaras, R.L.: Tractable bayesian learning of tree augmented naive bayes classifiers. In: Proceedings of the Twentieth International Conference on Machine Learning, pp. 75–82 (2003)

    Google Scholar 

  5. Cerquides, J., de Màntaras, R.L.: Tractable bayesian learning of tree augmented naive bayes classifiers. long version. Technical Report IIIA-2003-04, Institut d’Investigació en Intel.ligència Artificial (2003)

    Google Scholar 

  6. Domingos, P., Pazzani, M.: On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning 29, 103–130 (1997)

    Article  MATH  Google Scholar 

  7. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  8. Heckerman, D., Geiger, D., Chickering, D.: Learning bayesian networks: The combination of knowledge and statistical data. Machine Learning 20, 197–243 (1995)

    MATH  Google Scholar 

  9. Katoh, N., Ibaraki, T., Mine, H.: An algorithm for finding k minimum spanning trees. SIAM J. Comput. 10(2), 247–255 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kontkanen, P., Myllymaki, P., Silander, T., Tirri, H.: Bayes Optimal Instance-Based Learning. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 77–88. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Langley, P., Iba, W., Thompson, K.: An Analysis of Bayesian Classifiers. In: Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 223–228. AAAI Press and MIT Press (1992)

    Google Scholar 

  12. Meila, M., Jaakkola, T.: Tractable bayesian learning of tree belief networks. In: Proc. of the Sixteenth Conference on Uncertainty in Artificial Intelligence (2000)

    Google Scholar 

  13. Meila, M., Jaakkola, T.: Tractable bayesian learning of tree belief networks. Technical Report CMU-RI-TR-00-15, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (May 2000)

    Google Scholar 

  14. Meila, M., Jordan, M.I.: Learning with mixtures of trees. Journal of Machine Learning Research 1, 1–48 (2000)

    Article  MathSciNet  Google Scholar 

  15. Pettie, S., Ramachandran, V.: An optimal minimum spanning tree algorithm. Journal of the ACM (JACM) 49(1), 16–34 (2002)

    Article  MathSciNet  Google Scholar 

  16. Thearling, K.: Some thoughts on the current state of data mining software applications. In: Keys to the Commercial Success of Data Mining, KDD 1998 Workshop (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cerquides, J., Lòpez de Màntaras, R. (2004). Maximum a Posteriori Tree Augmented Naive Bayes Classifiers. In: Suzuki, E., Arikawa, S. (eds) Discovery Science. DS 2004. Lecture Notes in Computer Science(), vol 3245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30214-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30214-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23357-2

  • Online ISBN: 978-3-540-30214-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics