Skip to main content

Inverse Function Delayed Model for Optimization Problems

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2004)

Abstract

The ID model is a novel model derived from a macroscopic model that is attached to conventional network action, and the important character is what we can introduce negative resistance effect into. In this paper, we aim at the unstabilization of local minimum states, which is a big problem to solving optimization problems in a neural network, by the action of this negative resistance effect, and we show the good performance by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Math. Biophysics. 5, 115–133 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  2. Caianiello, E.R.: Outline of a theory of thought processes and thinking machine. J. Theor. Biol. 1, 204–235 (1961)

    Article  MathSciNet  Google Scholar 

  3. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  4. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophysical J. 2, 445–466 (1961)

    Article  Google Scholar 

  5. Nakajima, K., Hayakawa, Y.: Characteristics of Inverse Delayed Model for Neural Computation. In: Proceedings 2002 International Symposium on Nonlinear Theory and Its Applications, pp. 861–864 (2002)

    Google Scholar 

  6. Nakaguchi, T., Jinno, K., Tanaka, M.: Hysteresis neural networks for N-queens problems. IEICE Trans. Fundamentals, E82-A, 1851–1859.

    Google Scholar 

  7. Yanai, H., Sawada, Y.: Associative memory network composed of neurons with hysteretic property. Neural Networks 3, 223–228 (1990)

    Article  Google Scholar 

  8. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE. 50, 2061–2070 (1962)

    Article  Google Scholar 

  9. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. In: Proc. Natl. Sci. USA, vol. 81, pp. 3088–3092 (1984)

    Google Scholar 

  10. Yanai, H., Sawada, Y.: Integrator neurons for analog neural networks. IEEE Trans. Circuits Syst. 37, 854–856 (1990)

    Article  Google Scholar 

  11. Hopfield, J.J., Tank, D.W.: Neural computational of decisions in optimization problems. Biol. Cybern. 52, 141–152 (1985)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hayakawa, Y., Denda, T., Nakajima, K. (2004). Inverse Function Delayed Model for Optimization Problems. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30132-5_132

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30132-5_132

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23318-3

  • Online ISBN: 978-3-540-30132-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics