Skip to main content

A New Encoding for the Degree Constrained Minimum Spanning Tree Problem

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2004)

Abstract

We present an effective new encoding method for use by black-box optimisation methods when addressing tree-based combinatorial problems. It is simple, easily handles degree constraints, and is easily extendable to incorporate problem-specific knowledge. We test it on published benchmark degree-constrained minimum spanning tree (DC-MST) problems, comparing against two other well-known encodings. The new method outperforms the comparative encodings. We have not yet compared against the recently published ‘edge-sets’ encoding, however we can report preliminary work which indicates sophisticated versions of the new encoding can outperform edge-set on at least some classes of DC-MST.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abuali, F.N., Wainwright, R.L., Schoenefeld, D.A.: Determinant Factorization: A New Encoding Scheme for Spanning Trees Applied to the Probabilistic Minimum Spanning Tree Problem. In: Eshelman, L.J. (ed.) Proc. 6th ICGA, pp. 470–477 (1995)

    Google Scholar 

  2. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Computing 6(2), 154–160 (1994)

    MATH  Google Scholar 

  3. Boldon, B., Deo, N., Kumar, N.: Minimum-weight degree-constrained spanning tree problem: Heuristics and implementation on an SIMD parallel machine. Parallel Computing 22, 369–382 (1996)

    Article  MATH  Google Scholar 

  4. Dengiz, B., Altiparmak, F., Smith, A.E.: Local Search Genetic Algorithm for Optimal Design of Reliable Networks. IEEE Trans. on Evolutionary Computation 1(3) (1997)

    Google Scholar 

  5. Gaube, T., Rothlauf, F.: The Link and Node Biased Encoding Revisited: Bias and Adjustment of Parameters. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 1–10. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Gen, M., Cheng, R.: Genetic Algorithms and Engineering Design. Wiley, Chichester (1997)

    Google Scholar 

  7. Gottlieb, J., Julstrom, G.A., Raidl, G.R., Rothlauf, F.: Prufer number: A Poor Representation of Spanning Trees for Evolutionary Search, IlliGAL Report No. 2001001, Illinois Genetic Algorithms Lab. Univ. of Illinois (2001)

    Google Scholar 

  8. Julstrom, B.A., Raidl, G.R.: Initialization is Robust in Evolutionary Algorithms that Encode Spanning Trees as Sets of Edges. ACM SAC, New York (2002)

    Google Scholar 

  9. Knowles, J.D., Corne, D.W.: A new evolutionary approach to the degree-constrained minimum spanning tree problem. IEEE Trans. on Evolutionary Computation 4(2), 125–134 (2000)

    Article  Google Scholar 

  10. Krishnamoorthy, M., Ernst, A.T., Sharaiha, Y.M.: Comparision of Algorithms for the Degree Constrained Minimum Spanning Tree. Journal of Heuristics 7, 587–611 (2001)

    Article  MATH  Google Scholar 

  11. Li, Y.: An Effective Implementation of a Direct Spanning Tree Representation in GAs. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 11–19. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Michalewicz, Z.: Genetic Algorithms+Data Structures=Evolution Programs. Springer, Heidelberg (1992)

    MATH  Google Scholar 

  13. Narula, S.C., Ho, C.A.: Degree-constrained minimum spanning tree. Computer and Operations Research 7, 239–249 (1980)

    Article  Google Scholar 

  14. Palmer, C., Kershenbaum, A.: Representing Trees in Genetic Algorithms. Proc. IEEE ICEC, 379–384 (1994)

    Google Scholar 

  15. Palmer, C., Kershenbaum, A.: An Approach to a Problem in Network Design Using GAs. Networks 26 (1995)

    Google Scholar 

  16. Piggott, P., Suraweera, F.: Encoding graphs for genetic algorithms: An investigation using the minimum spanning tree problem. In: Yao, X. (ed.) AI-WS 1993 and 1994. LNCS, vol. 956, pp. 305–314. Springer, Heidelberg (1995)

    Google Scholar 

  17. Raidl, G.R., Julstrom, B.A.: Edge-Sets: An Effective Evolutionary Coding of Spanning Trees, TR-186-1-01-01, Vienna University of Technology (2002)

    Google Scholar 

  18. Raidl, G.R., Drexel, C.: A Predecessor Coding in an Evolutionary Algorithm for the Capacitated Minimum Spanning Tree Problem, Late-Breaking-Papera. In: Proc. GECCO 2000, pp. 309–316 (2000)

    Google Scholar 

  19. Rothlauf, F., Goldberg, D.E., Heinzl, A.: Network Random Keys - A Tree Network Representation Scheme for Genetic and Evolutionary Algorithms, IlliGAL Report No. 2000031 (2000)

    Google Scholar 

  20. Schindler, B., Rothlauf, F., Pesch, H.J.: Evolution Strategies, Network Random Keys, and the One-Max Tree Problem. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 143–152. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Soak, S.-M., Ahn, B.-H.: New Subtour-Based Crossover Operator for the TSP, GECCO 2003. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1610–1611. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Zhou, G., Gen, M.: A Note on GAs for Degree-Constrained Spanning Tree Problems. Networks 30, 91–95 (1997)

    Article  MATH  Google Scholar 

  23. Zhou, G., Gen, M.: An Effective Genetic Algorithm Approach to The Quadratic Minimum Spanning Tree Problem. Computers Operations Researches 25(3), 229–237 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Soak, SM., Corne, D., Ahn, BH. (2004). A New Encoding for the Degree Constrained Minimum Spanning Tree Problem. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30132-5_128

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30132-5_128

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23318-3

  • Online ISBN: 978-3-540-30132-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics