Skip to main content

The Impact of Pipelining on Energy per Operation in Field-Programmable Gate Arrays

  • Conference paper
Field Programmable Logic and Application (FPL 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3203))

Included in the following conference series:

Abstract

This paper investigates experimentally the quantitative impact of pipelining on energy per operation for two representative FPGA devices: a 0.13μm CMOS high density/high speed FPGA (Altera Stratix EP1S40), and a 0.18μm CMOS low-cost FPGA (Xilinx XC2S200). The results are obtained by both measurements and execution of vendor-supplied tools for power estimation. It is found that pipelining can reduce the amount of energy per operation by between 40% and 90%. Further reduction in energy consumption can be achieved by power-aware clustering, although the effect becomes less pronounced for circuits with a large number of pipeline stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benini, L., et al.: Glitch power minimization by selective gate freezing. IEEE Trans. VLSI Systems 8(3), 287–298 (2000)

    Article  Google Scholar 

  2. Boemo, E.I., et al.: Some notes on power management on FPGA based systems. In: Moore, W., Luk, W. (eds.) FPL 1995. LNCS, vol. 975, pp. 149–157. Springer, Heidelberg (1995)

    Google Scholar 

  3. Chabini, N., et al.: Unification of basic retiming and supply voltage scaling to minimize dynamic power consumption for synchronous digital designs. In: Proc. ACM Great Lakes Symposium on VLSI (2003)

    Google Scholar 

  4. Chung, K.S., Kim, T., Liu, C.L.: A complete model for glitch analysis in logic circuits. Journal of Circuits, Systems, and Computers 11(2), 137–154 (2002)

    Google Scholar 

  5. Constantinides, G.A.: Perturbation analysis for word-length optimization. In: Proc. Int. Symp. field-Programmable Custom Computing Machines, pp. 81–90 (2003)

    Google Scholar 

  6. Hsu, Y.L., Wang, S.J.: Retiming-based logic synthesis for low power. In: Proc. Int. Symp. Low Power Electronics and Design, pp. 275–278. ACM Press, New York (2002)

    Google Scholar 

  7. Kandemir, M., et al.: Influence of compiler optimizations on system power. IEEE Trans. VLSI 9(6), 801–804 (2001)

    Article  Google Scholar 

  8. Kim, D., Choi, K.: Power conscious high level synthesis using loop folding. In: Proc. 34th Design Automation Conference (1997)

    Google Scholar 

  9. Kumthekar, B., et al.: Power optimization of FPGA-based designs without rewiring. IEE Proc. 147(3), 167–174 (2002)

    Google Scholar 

  10. Lamoureux, J., Wilton, S.: On the interaction between power-aware FPGA CAD algorithms. In: Proc. ICCAD (2003)

    Google Scholar 

  11. Luk, W., et al.: Parameterized hardware libraries for configurable system-on-chip technology. Canadian Journal of Elect. and Computer Engineering 26(3/4), 125–129 (2001)

    Google Scholar 

  12. Marquardt, A., Betz, V., Rose, J.: Using cluster-based logic blocks and timing-driven packing to improve FPGA speed and density. ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays, 37–46 (February 1999)

    Google Scholar 

  13. Monteiro, J.C., Devadas, S., Ghosh, A.: Retiming sequential circuits for low power. In: Proc. ICCAD, pp. 398–402 (1993)

    Google Scholar 

  14. Monteiro, J.C., Oliveira, A.L.: Finite state machine decomposition for low power. In: Proc. 35th Design Automation Conference (1998)

    Google Scholar 

  15. Raghunathan, A., Dey, S., Jia, N.K.: Register transfer level power optimization with emphasis on glitch analysis and reduction. IEEE Trans. CAD 18(8), 114–1131 (1999)

    Google Scholar 

  16. Reyneri, L.M., et al.: A hardware/software co-design flow and IP library based on Simulink. In: Proc. 38th Design Automation Conference (2001)

    Google Scholar 

  17. Singh, A., et al.: Interconnect pipelining in a throughput-intensive FPGA architecture. In: ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays, pp. 153–160 (2001)

    Google Scholar 

  18. Singh, D., Brown, S.: The case for registered routing switches in Field Programmable Gate Arrays. In: ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays, pp. 161–169 (2001)

    Google Scholar 

  19. Stitt, G., et al.: Using on-chip configurable logic to reduce embedded system software energy. In: Proc. Int. Symp. Field-Programmable Custom Computing Machines, pp. 143–151. IEEE Computer Society Press, Los Alamitos (2002)

    Chapter  Google Scholar 

  20. Sutter, G., et al.: Logic depth, power, and pipeline granularity: updated results on XC4K and Virtex FPGAs. In: Computacion Reconfigurable & FPGAs, Publicaciones Digitales S.A, pp. 201–207 (2003)

    Google Scholar 

  21. Tsu, W., et al.: HSRA: High-speed, hierarchical synchronous reconfigurable array. In: ACM Seventh International Symposium on Field-Programmable Gate Arrays (February 1999)

    Google Scholar 

  22. Zuchowski, P., et al.: A hybrid ASIC and FPGA architecture. In: Proc. ICCAD, pp. 187–194 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wilton, S.J.E., Ang, SS., Luk, W. (2004). The Impact of Pipelining on Energy per Operation in Field-Programmable Gate Arrays. In: Becker, J., Platzner, M., Vernalde, S. (eds) Field Programmable Logic and Application. FPL 2004. Lecture Notes in Computer Science, vol 3203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30117-2_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30117-2_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22989-6

  • Online ISBN: 978-3-540-30117-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics