Skip to main content

Disorders of Tyrosine Metabolism

  • Chapter
Inborn Metabolic Diseases

Abstract

Five inherited disorders of tyrosine metabolism are known, depicted in Fig. 18.1. Hereditary tyrosinaemia type I is characterised by progressive liver disease and renal tubular dysfunction with rickets. Hereditary tyrosinaemia type II (Richner-Hanhart syndrome) presents with keratitis and blisterous lesions of the palms and soles. Tyrosinaemia type III may be asymptomatic or associated with mental retardation. Hawkinsinuria may be asymptomatic or presents with failure to thrive and metabolic acidosis in infancy. In alkaptonuria symptoms of osteoarthritis usually appear in adulthood. Other inborn errors of tyrosine metabolism include oculocutaneous albinism caused by a deficiency of melanocyte-specific tyrosinase, converting tyrosine into DOPA-quinone; the deficiency of tyrosine hydroxylase, the first enzyme in the synthesis of dopamine from tyrosine; and the deficiency of aromatic L-amino acid decarboxylase, which also affects tryptophan metabolism. The latter two disorders are covered in ▸ Chap. 29.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van Spronsen FJ, Thomasse Y, Smit GP et al (1994) Hereditary tyrosinemia type I: a new clinical classification with difference in prognosis on dietary treatment. Hepatology 20:1187–1191

    Article  PubMed  Google Scholar 

  2. Russo PA, Mitchell GA, Tanguay RM (2001) Tyrosinemia: a review. Pediatr Dev Pathol 4:212–221

    Article  PubMed  CAS  Google Scholar 

  3. Weinberg AG, Mize CE, Worthen HG (1976) The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J Pediatr 88:434–438

    Article  PubMed  CAS  Google Scholar 

  4. Forget S, Patriquin HB, Dubois J et al (1999) The kidney in children with tyrosinemia: sonographic, CT and biochemical findings. Pediatr Radiol 29:104–108

    Article  PubMed  CAS  Google Scholar 

  5. Mitchell G, Larochelle J, Lambert M et al (1990) Neurologic crises in hereditary tyrosinemia. N Engl J Med 322:432–437

    Article  PubMed  CAS  Google Scholar 

  6. Edwards MA, Green A, Colli A, Rylance G (1987) Tyrosinaemia type I and hypertrophic obstructive cardiomyopathy. Lancet 1:1437–1438

    Article  PubMed  CAS  Google Scholar 

  7. Lindberg T, Nilsson KO, Jeppsson JO (1979) Hereditary tyrosinaemia and diabetes mellitus. Acta Paediatr Scand 68:619–620

    PubMed  CAS  Google Scholar 

  8. Manabe S, Sassa S, Kappas A (1985) Hereditary tyrosinemia. Formation of succinylacetone-amino acid adducts. J Exp Med 162:1060–1074

    Article  PubMed  CAS  Google Scholar 

  9. Jorquera R, Tanguay RM (1997) The mutagenicity of the tyrosine metabolite, fumarylacetoacetate, is enhanced by glutathione depletion. Biochem Biophys Res Commun 232:42–48

    Article  PubMed  CAS  Google Scholar 

  10. Grompe M (2001) The pathophysiology and treatment of hereditary tyrosinemia type 1. Semin Liver Dis 21:563–571

    Article  PubMed  CAS  Google Scholar 

  11. Endo F, Sun MS (2002) Tyrosinaemia type I and apoptosis of hepatocytes and renal tubular cells. J Inherit Metab Dis 25:227–234

    Article  PubMed  CAS  Google Scholar 

  12. Tanguay RM, Jorquera R, Poudrier J, St Louis M (1996) Tyrosine and its catabolites: from disease to cancer. Acta Biochim Pol 43:209–216

    PubMed  CAS  Google Scholar 

  13. Kvittingen EA, Rootwelt H, Berger R, Brandtzaeg P (1994) Selfinduced correction of the genetic defect in tyrosinemia type I. J Clin Invest 94:1657–1661

    PubMed  CAS  Google Scholar 

  14. Demers S, I, Russo P, Lettre F, Tanguay RM (2003) Frequent mutation reversion inversely correlates with clinical severity in a genetic liver disease, hereditary tyrosinemia. Hum Pathol 34:1313–1320

    Article  PubMed  CAS  Google Scholar 

  15. Roth KS, Carter BE, Higgins ES (1991) Succinylacetone effects on renal tubular phosphate metabolism: a model for experimental renal Fanconi syndrome. Proc Soc Exp Biol Med 196:428–431

    PubMed  CAS  Google Scholar 

  16. Giger U, Meyer UA (1983) Effect of succinylacetone on heme and cytochrome P450 synthesis in hepatocyte culture. FEBS Lett 153:335–338

    Article  PubMed  CAS  Google Scholar 

  17. Tschudy DP, Hess A, Frykholm BC, Blease BM (1982) Immunosuppressive activity of succinylacetone. J Lab Clin Med 99:526–532

    PubMed  CAS  Google Scholar 

  18. Stenson PD, Ball EV, Mort M et al (2003) Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21:577–581

    Article  PubMed  CAS  Google Scholar 

  19. Poudrier J, Lettre F, Scriver CR et al (1998) Different clinical forms of hereditary tyrosinemia (type I) in patients with identical genotypes. Mol Genet Metab 64:119–125

    Article  PubMed  CAS  Google Scholar 

  20. Rootwelt H, Brodtkorb E, Kvittingen EA (1994) Identification of a frequent pseudodeficiency mutation in the fumarylacetoacetase gene, with implications for diagnosis of tyrosinemia type I. Am J Hum Genet 55:1122–1127

    PubMed  CAS  Google Scholar 

  21. Kvittingen EA, Halvorsen S, Jellum E (1983) Deficient fumarylacetoacetate fumarylhydrolase activity in lymphocytes and fibroblasts from patients with hereditary tyrosinemia. Pediatr Res 17:541–544

    PubMed  CAS  Google Scholar 

  22. Kvittingen EA, Jellum E, Stokke O (1981) Assay of fumarylacetoacetate fumarylhydrolase in human liver-deficient activity in a case of hereditary tyrosinemia. Clin Chim Acta 115:311–319

    Article  PubMed  CAS  Google Scholar 

  23. Laberge C, Grenier A, Valet JP, Morissette J (1990) Fumarylacetoacetase measurement as a mass-screening procedure for hereditary tyrosinemia type I. Am J Hum Genet 47:325–328

    PubMed  CAS  Google Scholar 

  24. Halvorsen S (1980) Screening for disorders of tyrosine metabolism. In: Bickel H, Guthrie R, Hammersen G (eds) Neonatal screening for inborn errors of metabolism. Springer, Berlin Heidelberg New York, pp 45–57

    Google Scholar 

  25. Pollitt RJ, Green A, McCabe CJ et al (1997) Neonatal screening for inborn errors of metabolism: cost, yield and outcome. Health Technol Assess 1:37–47

    Google Scholar 

  26. McCormack MJ, Walker E, Gray RG et al (1992) Fumarylacetoacetase activity in cultured and non-cultured chorionic villus cells, and assay in two high-risk pregnancies. Prenat Diagn 12:807–813

    PubMed  CAS  Google Scholar 

  27. Kvittingen EA, Steinmann B, Gitzelmann R et al (1985) Prenatal diagnosis of hereditary tyrosinemia by determination of fumarylacetoacetase in cultured amniotic fluid cells. Pediatr Res 19:334–337

    PubMed  CAS  Google Scholar 

  28. Jakobs C, Stellaard F, Kvittingen EA et al (1990) First-trimester prenatal diagnosis of tyrosinemia type I by amniotic fluid succinylacetone determination. Prenat Diagn 10:133–134

    PubMed  CAS  Google Scholar 

  29. Poudrier J, Lettre F, St Louis M, Tanguay RM (1999) Genotyping of a case of tyrosinaemia type I with normal level of succinylacetone in amniotic fluid. Prenat Diagn 19:61–63

    Article  PubMed  CAS  Google Scholar 

  30. Lock EA, Ellis MK, Gaskin P et al (1998) From toxicological problem to therapeutic use: the discovery of the mode of action of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), its toxicology and development as a drug. J Inherit Metab Dis 21:498–506

    Article  PubMed  CAS  Google Scholar 

  31. Holme E, Lindstedt S (2000) Nontransplant treatment of tyrosinemia. Clin Liver Dis 4:805–814

    Article  PubMed  CAS  Google Scholar 

  32. Hall MG, Wilks MF, Provan WM et al (2001) Pharmacokinetics and pharmacodynamics of NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione) and mesotrione, inhibitors of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) following a single dose to healthy male volunteers. Br J Clin Pharmacol 52:169–177

    Article  PubMed  CAS  Google Scholar 

  33. Vogel A, van dB, I, Al Dhalimy M et al (2004) Chronic liver disease in murine hereditary tyrosinemia type 1 induces resistance to cell death. Hepatology 39:433–443

    Article  PubMed  CAS  Google Scholar 

  34. Dr. Julie Reed. (2004) Birmingham Children’s Hospital. Personal Communication

    Google Scholar 

  35. Mohan N, McKiernan P, Preece MA et al (1999) Indications and outcome of liver transplantation in tyrosinaemia type 1. Eur J Pediatr 158[Suppl 2]:S49–S54

    Article  PubMed  Google Scholar 

  36. Wijburg FA, Reitsma WC, Slooff MJ et al (1995) Liver transplantation in tyrosinaemia type I: the Groningen experience. J Inherit Metab Dis 18:115–118

    Article  PubMed  CAS  Google Scholar 

  37. Laine J, Salo MK, Krogerus L et al (1995) The nephropathy of type I tyrosinemia after liver transplantation. Pediatr Res 37:640–645

    PubMed  CAS  Google Scholar 

  38. Freese DK, Tuchman M, Schwarzenberg SJ et al (1991) Early liver transplantation is indicated for tyrosinemia type I. J Pediatr Gastroenterol Nutr 13:10–15

    Article  PubMed  CAS  Google Scholar 

  39. Wilson CJ, Van Wyk KG, Leonard JV, Clayton PT (2000) Phenylalanine supplementation improves the phenylalanine profile in tyrosinaemia. J Inherit Metab Dis 23:677–683

    Article  PubMed  CAS  Google Scholar 

  40. Dr. P McKiernan (2004) Birmingham Children’s Hospital. Personal Communication

    Google Scholar 

  41. Buist NRM, Kennaway NG, Fellman JH (1985) Tyrosinaemia type II. In: Bickel H, Wachtel U (eds) Inherited diseases of amino acid metabolism. Thieme, Stuttgart, pp 203–235

    Google Scholar 

  42. Heidemann DG, Dunn SP, Bawle E, V, Shepherd DM (1989) Early diagnosis of tyrosinemia type II. Am J Ophthalmol 107:559–560

    PubMed  CAS  Google Scholar 

  43. Paige DG, Clayton P, Bowron A, Harper JI (1992) I. Richner-Hanhart syndrome (oculocutaneous tyrosinaemia, tyrosinaemia type II). J R Soc Med 85:759–760

    PubMed  CAS  Google Scholar 

  44. Rabinowitz LG, Williams LR, Anderson CE et al (1995) Painful keratoderma and photophobia: hallmarks of tyrosinemia type II. J Pediatr 126:266–269

    Article  PubMed  CAS  Google Scholar 

  45. Fois A, Borgogni P, Cioni M et al (1986) Presentation of the data of the Italian registry for oculocutaneous tyrosinaemia. J Inherit Metab Dis 9:262–264

    Article  Google Scholar 

  46. Bohnert A, Anton-Lamprecht I (1982) Richner-Hanhart syndrome: ultrastructural abnormalities of epidermal keratinization indicating a causal relationship to high intracellular tyrosine levels. J Invest Dermatol 72:68–74

    Article  Google Scholar 

  47. Macsai MS, Schwartz TL, Hinkle D et al (2001) Tyrosinemia type II: nine cases of ocular signs and symptoms. Am J Ophthalmol 132:522–527

    Article  PubMed  CAS  Google Scholar 

  48. Barr DG, Kirk JM, Laing SC (1991) Outcome in tyrosinaemia type II. Arch Dis Child 66:1249–1250

    Article  PubMed  CAS  Google Scholar 

  49. Cerone R, Fantasia AR, Castellano E et al (2002) Pregnancy and tyrosinaemia type II. J Inherit Metab Dis 25:317–318

    Article  PubMed  CAS  Google Scholar 

  50. Francis DE, Kirby DM, Thompson GN (1992) Maternal tyrosinaemia II: management and successful outcome. Eur J Pediatr 151:196–199

    Article  PubMed  CAS  Google Scholar 

  51. Chitayat D, Balbul A, Hani V et al (1992) Hereditary tyrosinaemia type II in a consanguineous Ashkenazi Jewish family: intrafamilial variation in phenotype; absence of parental phenotype effects on the fetus. J Inherit Metab Dis 15:198–203

    Article  PubMed  CAS  Google Scholar 

  52. Ellaway CJ, Holme E, Standing S, Preece MA et al (2001) Outcome of tyrosinaemia type III. J Inherit Metab Dis 24:824–832

    Article  PubMed  CAS  Google Scholar 

  53. Rüetschi U, Cerone R, Pérez CC et al (2000) Mutations in the 4-hydroxyphenylpyruvate dioxygenase gene (HPD) in patients with tyrosinemia type III. Hum Genet 106:654–662

    Article  PubMed  Google Scholar 

  54. Rice DN, Houston IB, Lyon IC et al (1998) Transient neonatal tyrosinaemia. J Inherit Metab Dis 12:13–22

    Article  Google Scholar 

  55. Mamunes P, Prince PE, Thornton NH et al (1976) Intellectual deficits after transient tyrosinemia in the term neonate. Pediatrics 57:675–680

    PubMed  CAS  Google Scholar 

  56. Phornphutkul C., Introne WJ, Perry MB et al (2002) Natural history of alkaptonuria. N Engl J Med 347:2111–2121

    Article  PubMed  CAS  Google Scholar 

  57. Garrod AE (1902) The incidence of alkaptonuria: a study in chemical individuality. Lancet 2:1616–1620

    Article  CAS  Google Scholar 

  58. Crissy RE, Day AJ (1950) Ochronosis: a case report. J Bone Joint Surg Am 32:688

    Google Scholar 

  59. Murray JC, Lindberg KA, Pinnell SR (1977) In vitro inhibition of chick embryo lysyl oxidase by homogentisic acid. A proposed connective tissue defect in alkaptonuria. J Clin Invest 59:1071–1079

    Article  PubMed  CAS  Google Scholar 

  60. Bory C, Boulieu R, Chantin C, Mathieu M (1990) Diagnosis of alcaptonuria: rapid analysis of homogentisic acid by HPLC. Clin Chim Acta 189:7–11

    Article  PubMed  CAS  Google Scholar 

  61. Fernández-Cañón JM, Peñalva MA (1997) Spectrophotometric determination of homogentisate using aspergillus nidulans homogentisate dioxygenase. Anal Biochem 245:218–221

    Article  PubMed  Google Scholar 

  62. de Haas V, Carbasius Weber EC, de Clerk JB et al (1998) The success of dietary protein restriction of alkaptonuria patients is agedependent. J Inherit Metab Dis 21:791–798

    Article  PubMed  Google Scholar 

  63. Lustberg TJ, Schulmanm JD, Seegmiller JE (2004) Decreased binding of 14-C homogentisic acid induced by ascorbic acid in connective tissue of rats with experimental alkaptonuria. Nature 228:770–771

    Article  Google Scholar 

  64. Wolff JA, Barshop B, Nyhan W et al (1989) Effects of ascorbic acid in alkaptonuria: alterations in benzoquinone acetic acid and an ontogenic effect in infancy. Pediatr Res 26:140–144

    PubMed  CAS  Google Scholar 

  65. Niederwieser A, Matasovic A, Tippett P, Danks D (1977) A new sulfur amino acid, named Hawkinsin, identified in a baby with transient tyrosinemia and her mother. Clin Chim Acta 76:345–356

    Article  PubMed  CAS  Google Scholar 

  66. Wilcken B, Hammond J, Howard N et al (1981) Hawkinsinuria: a dominantly inherited defect of tyrosine metabolism with severe effects in infancy. N Engl J Med 305:865–868

    Article  PubMed  CAS  Google Scholar 

  67. Borden M, Holm J, Leslie J et al (1992) Hawkinsinuria in two families. Am J Med Genet 44:52–56

    Article  PubMed  CAS  Google Scholar 

  68. Nyhan W (1984) Hawkinsinuria. In: Nyhan W (ed) Abnormalities in amino acid metabolism in clinical medicine. Appleton-Century-Crofts, Norwalk, CT

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Chakrapani, A., Holme, E. (2006). Disorders of Tyrosine Metabolism. In: Fernandes, J., Saudubray, JM., van den Berghe, G., Walter, J.H. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-28785-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28785-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28783-4

  • Online ISBN: 978-3-540-28785-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics