Skip to main content

Quadratic K-Theory and Geometric Topology

  • Reference work entry
Handbook of K-Theory

Abstract

Suppose R is a ring with an (anti)-involution −: RR, and with choice of central unit ε such that \( \bar{\epsilon}\epsilon = 1 \). Then one can ask for a computation of \( \mathbb{K} Quad (R,-,\epsilon) \), the K-theory of quadratic forms. Let H: \( \mathbb{K}R \rightarrow \mathbb{K} Quad (R,-,\epsilon) \) be the hyperbolic map, and let F : \( \mathbb{K} Quad (R,-,\epsilon) \rightarrow \mathbb{K}R \) be the forget map. Then the Witt groups

$$ W_{0}(R,-,\epsilon) = coker (K_{0}R \xrightarrow{H} K_{0}Quad(R,-,\epsilon)) $$
$$ W_{1}(R,-,\epsilon) = ker (F: KQuad_{1}(R,-,\epsilon) \xrightarrow{F} K_{1}R) $$

have been highly studied. See [6], [29, 32, 42, 46, 68], and [86]–[89]. However, the higher dimensional quadratic K-theory has received considerably less attention, than the higher K-theory of f.g. projective modules. (See however, [34, 35, 39], and [36].)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. John Frank Adams, Infinite loop spaces, Annals of Mathematics Studies, vol.90, Princeton University Press, Princeton, N.J., 1978. MR 80d:55001

    MATH  Google Scholar 

  2. A. Adem, R.L. Cohen, and W.G. Dwyer, Generalized Tate homology, homotopy fixed points and the transfer, Algebraic topology (Evanston, IL, 1988), Contemp. Math., vol. 96, Amer. Math. Soc., Providence, RI, 1989, pp. 1–13. MR 90k:55012

    Google Scholar 

  3. Douglas R. Anderson and W.C. Hsiang, The functors Ki and pseudo-isotopies of polyhedra, Ann. of Math. (2) 105 (1977), no. 2, 201–223. MR 55 #13447

    Google Scholar 

  4. Douglas R. Anderson and Wu Chung Hsiang, Extending combinatorial piecewise linear structures on stratified spaces. II, Trans. Amer. Math. Soc. 260 (1980), no. 1, 223–253. MR 81h:57009

    Article  MATH  MathSciNet  Google Scholar 

  5. Peter L. Antonelli, Dan Burghelea, and Peter J. Kahn, The concordancehomotopy groups of geometric automorphism groups, Springer-Verlag, Berlin, 1971, Lecture Notes in Mathematics, Vol. 215. MR 50 #11293

    Google Scholar 

  6. Anthony Bak, K -theory of forms, Annals of Mathematics Studies, vol. 98, Princeton University Press, Princeton, N.J., 1981. MR 84m:10012

    MATH  Google Scholar 

  7. P. Balmer, Witt groups, this volume.

    Google Scholar 

  8. Hyman Bass, Algebraic K -theory, W.A. Benjamin, Inc., New York-Amsterdam, 1968. MR 40 #2736

    MATH  Google Scholar 

  9. A.J. Berrick and M. Karoubi, Hermitian K -theory of the integers), preprint.

    Google Scholar 

  10. J.Bryant,S.Ferry,W.Mio,andS.Weinberger,Topologyofhomologymanifolds, Ann. of Math. (2) 143 (1996), no. 3, 435–467. MR 97b:57017

    Google Scholar 

  11. D. Burghelea and Z. Fiedorowicz, Hermitian algebraic K -theory of topological spaces, Algebraic K-theory, number theory, geometry and analysis (Bielefeld, 1982), Lecture Notes in Math., vol. 1046, Springer, Berlin, 1984, pp. 32–46. MR 86c:18005

    Google Scholar 

  12. D. Burghelea and Z. Fiedorowicz, Hermitian algebraic K -theory of simplicial rings and topological spaces, J. Math. Pures Appl. (9) 64 (1985), no. 2, 175–235. MR 87d:18013

    Google Scholar 

  13. D. Burghelea and R. Lashof, Geometric transfer and the homotopy type of the automorphism groups of a manifold, Trans. Amer. Math. Soc. 269 (1982), no. 1, 1–38. MR 83c:57016

    Article  MATH  MathSciNet  Google Scholar 

  14. Dan Burghelea, Automorphisms of manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 347–371. MR 80g:57001

    Google Scholar 

  15. Sylvain E. Cappell, A splitting theorem for manifolds, Invent. Math. 33 (1976), no. 2, 69–170. MR 55 #11274

    Article  MATH  MathSciNet  Google Scholar 

  16. Gunnar Carlsson, Equivariant stable homotopy and Segal’s Burnside ring conjecture, Ann. of Math. (2) 120 (1984), no. 2, 189–224. MR 86f:57036

    Article  MathSciNet  Google Scholar 

  17. David W. Carter, Lower K -theory of finite groups, Comm. Algebra 8 (1980), no. 20, 1927–1937. MR 81m:16027

    Article  MATH  MathSciNet  Google Scholar 

  18. T.A. Chapman, Homotopic homeomorphisms of Hilbert cube manifolds, Geometric topology (Proc. Conf., Park City, Utah, 1974), Springer, Berlin, 1975, pp. 122–136. Lecture Notes in Math., Vol. 438. MR 53 #6567

    Google Scholar 

  19. T.A. Chapman, Homotopic homeomorphisms of Hilbert cube manifolds, Geometric topology (Proc. Conf., Park City, Utah, 1974), Springer, Berlin, 1975, pp. 122–136. Lecture Notes in Math., Vol. 438. MR 53 #6567

    Google Scholar 

  20. T.A. Chapman, Lectures on Hilbert cube manifolds, American Mathematical Society, Providence, R. I., 1976, Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975, Regional Conference Series in Mathematics, No. 28. MR 54 #11336

    Google Scholar 

  21. T.A. Chapman, Piecewise linear fibrations, Pacific J. Math. 128 (1987), no. 2, 223–250. MR 88f:57034

    MATH  MathSciNet  Google Scholar 

  22. W. Dwyer, M. Weiss, and B. Williams, A parametrized index theorem for the algebraic K -theory Euler class, Acta Math. 190 (2003), no. 1, 1–104. MR 2004d:19004

    Article  MATH  MathSciNet  Google Scholar 

  23. Lisbeth Fajstrup, A Z |2descent theorem for the algebraic K -theory of a semi simple real algebra, K-Theory 14 (1998), no. 1, 43–77. MR 99d:19002

    Article  MATH  MathSciNet  Google Scholar 

  24. F.T. Farrell and L.E. Jones, The lower algebraic K -theory of virtually infinite cyclic groups, K-Theory 9 (1995), no. 1, 13–30. MR 96e:19003

    Article  MATH  MathSciNet  Google Scholar 

  25. Steven C. Ferry, Ian Hambleton, and Erik K. Pedersen, A survey of bounded surgery theory and applications, Algebraic topology and its applications, Math. Sci. Res. Inst. Publ., vol. 27, Springer, New York, 1994, pp. 57–80. MR 1 268 187

    Google Scholar 

  26. Z. Fiedorowicz, R. Schw¨anzl, and R. Vogt, Hermitian A rings and their K -theory, Adams Memorial Symposium on Algebraic Topology, 1 (Manchester, 1990), London Math. Soc. Lecture Note Ser., vol. 175, Cambridge Univ. Press, Cambridge, 1992, pp. 67–81. MR 93g:19009

    Google Scholar 

  27. Z. Fiedorowicz, R. Schw¨anzl, and R.M. Vogt, Hermitian structures on A ring spaces, K-Theory 6 (1992), no. 6, 519–558. MR 94b:19003a

    Article  MATH  MathSciNet  Google Scholar 

  28. J.P.C. Greenlees and J.P. May,Generalized Tateco homology, Mem. Amer. Math. Soc. 113 (1995), no. 543, viii+178. MR 96e:55006

    Google Scholar 

  29. AlexanderJ.HahnandO.TimothyO’Meara,Theclassicalgroupsand K -theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 291, Springer-Verlag, Berlin, 1989, With a foreword by J. Dieudonn´e. MR 90i:20002

    Google Scholar 

  30. Ian Hambleton, Algebraic K - and L -theory and applications to the topology of manifolds, Topology of high-dimensional manifolds, No. 1, 2 (Trieste, 2001), ICTP Lect. Notes, vol. 9, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2002, pp. 299–369. MR 2004a:19006

    Google Scholar 

  31. Ian Hambleton and Ib Madsen, Actions of finite groups on Rn+k with fixed set Rk , Canad. J. Math. 38 (1986), no. 4, 781–860. MR 87i:57035

    MATH  MathSciNet  Google Scholar 

  32. IanHambletonandLaurenceR.Taylor,Aguidetothecalculationofthesurgery obstruction groups for finite groups, Surveys on surgery theory, Vol. 1, Ann. of Math. Stud., vol. 145, Princeton Univ. Press, Princeton, NJ, 2000, pp. 225–274. MR 2001e:19007

    Google Scholar 

  33. A.E. Hatcher, Concordance spaces, higher simple-homotopy theory, and applications, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 3–21. MR 80f:57014

    Google Scholar 

  34. Jens Hornbostel, A1 -representability of Hermitian K -theory and Witt groups, preprint, 2002.

    Google Scholar 

  35. Jens Hornbostel, Constructions and d´evissage in Hermitian K -theory, K-Theory 26 (2002), no. 2, 139–170. MR 2003i:19002

    Article  MATH  MathSciNet  Google Scholar 

  36. Jens Hornbostel and Marco Schlichting, Localization in Hermitian K -theory for regular rings, preprint, 2001.

    Google Scholar 

  37. Bruce Hughes and Andrew Ranicki, Ends of complexes, Cambridge Tracts in Mathematics, vol. 123, Cambridge University Press, Cambridge, 1996. MR 98f:57039

    MATH  Google Scholar 

  38. C. Bruce Hughes, Bounded homotopy equivalences of Hilbert cube manifolds, Trans. Amer. Math. Soc. 287 (1985), no. 2, 621–643. MR 86i:57020

    Article  MATH  MathSciNet  Google Scholar 

  39. Max Karoubi, Le th´eor`eme fondamental de la K -th´eorie hermitienne, Ann. of Math. (2) 112 (1980), no. 2, 259–282. MR 82h:18010

    Article  MathSciNet  Google Scholar 

  40. G. Kennedy, Foundations of super-simple surgery theory, Ph.d. thesis, U. of Notre Dame, 1986.

    Google Scholar 

  41. John R. Klein, The dualizing spectrum of a topological group, Math. Ann. 319 (2001), no. 3, 421–456. MR 2001m:55037

    Article  MATH  MathSciNet  Google Scholar 

  42. Max-Albert Knus, Quadratic and Hermitian forms over rings, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 294, Springer-Verlag, Berlin, 1991, With a foreword by I. Bertuccioni. MR 92i:11039

    Google Scholar 

  43. Damjan Kobal, The Karoubitower and K -theory invariants of Hermitian forms, Ph.d. thesis, U. of Notre Dame, 1995.

    Google Scholar 

  44. Damjan Kobal, K -theory, Hermitian K -theory and the Karoubi tower, K-Theory 17 (1999), no. 2, 113–140. MR 2000g:19002

    Article  MATH  MathSciNet  Google Scholar 

  45. Damjan Kobal, The Karoubi tower and K -theory invariants of Hermitian forms, K-Theory 17 (1999), no. 2, 141–150. MR 2000g:19003

    Article  MATH  MathSciNet  Google Scholar 

  46. T.Y. Lam, The algebraic theory of quadratic forms, W.A. Benjamin, Inc., Reading, Mass., 1973, Mathematics Lecture Note Series. MR 53 #277

    MATH  Google Scholar 

  47. W. L¨uck and Reich Holger, The Baum-Connes and the Farrell-Jones conjectures in K - and L -theory, this volume.

    Google Scholar 

  48. Wolfgang L¨uck, A basic introduction to surgery theory, Topology of highdimensional manifolds, No. 1, 2 (Trieste, 2001), ICTP Lect. Notes, vol. 9, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2002, pp. 1–224. MR 2004a:57041

    Google Scholar 

  49. Ib Madsen and R. James Milgram, The classifying spaces for surgery and cobordism of manifolds, Annals of Mathematics Studies, vol. 92, Princeton University Press, Princeton, N.J., 1979. MR 81b:57014

    MATH  Google Scholar 

  50. Serge Maumary, Proper surgery groups and Wall-Novikov groups, Algebraic K-theory, III: Hermitian K-theory and geometric applications (Proc. Conf., Battelle Memorial Inst., Seatlle, Wash., 1972), Springer, Berlin, 1973, pp. 526–539. Lecture Notes in Math, Vol. 343. MR 51 #14107

    Google Scholar 

  51. John Milnor and Dale Husemoller, Symmetric bilinear forms, Springer-Verlag, New York, 1973, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73. MR 58 #22129

    MATH  Google Scholar 

  52. A.S. Miˇsˇcenko, Homotopy invariants of multiply connected manifolds. III. Higher signatures, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1316–1355. MR 45 #2735

    MathSciNet  Google Scholar 

  53. A. Neeman and A. Ranicki, Noncommutative localization and chain complexes I: algebraic K - and L -theory, e-print, RA.0109118.

    Google Scholar 

  54. Erik Kjaer Pedersen and Andrew Ranicki, Projective surgery theory, Topology 19 (1980), no. 3, 239–254. MR 81i:57032

    Article  MATH  MathSciNet  Google Scholar 

  55. Frank Quinn, Thesis, Ph.D. Thesis, Princeton University.

    Google Scholar 

  56. Frank Quinn, A geometric formulation of surgery, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 500–511. MR 43 #8087

    Google Scholar 

  57. A.A. Ranicki, Algebraic L -theory. I. Foundations, Proc. London Math. Soc. (3) 27 (1973), 101–125. MR 54 #2760a

    Article  MathSciNet  Google Scholar 

  58. A.A. Ranicki, Algebraic L -theory and topological manifolds, Cambridge Tracts in Mathematics, vol. 102, Cambridge University Press, Cambridge, 1992. MR 94i:57051

    MATH  Google Scholar 

  59. Andrew Ranicki, Algebraic and combinatorial codimension 1 transversality, e-print, AT.0308111.

    Google Scholar 

  60. Andrew Ranicki, Noncommutative localization in topology, e-print, AT.0303046.

    Google Scholar 

  61. Andrew Ranicki, Localization in quadratic L -theory, Algebraic topology, Waterloo, 1978 (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1978), Lecture Notes in Math., vol. 741, Springer, Berlin, 1979, pp. 102–157. MR 81f:57037

    Google Scholar 

  62. Andrew Ranicki, The algebraic theory of surgery. I. Foundations, Proc. London Math. Soc. (3) 40 (1980), no. 1, 87–192. MR 82f:57024a

    Google Scholar 

  63. Andrew Ranicki, The algebraic theory of surgery. II. Applications to topology, Proc. London Math. Soc. (3) 40 (1980), no. 2, 193–283. MR 82f:57024b

    Google Scholar 

  64. Andrew Ranicki, Exact sequences in the algebraic theory of surgery, Mathematical Notes, vol. 26, Princeton University Press, Princeton, N.J., 1981. MR 82h:57027

    MATH  Google Scholar 

  65. Andrew Ranicki, Lower K - and L -theory, London Mathematical Society Lecture Note Series, vol. 178, Cambridge University Press, Cambridge, 1992. MR 94f:19001

    MATH  Google Scholar 

  66. Andrew Ranicki, Algebraic and geometric surgery, Oxford Math. Mono., Clarendon Press, 2002, pp. xi+273.

    Google Scholar 

  67. Andrew Ranicki, Foundations of algebraic surgery, Topology of high-dimensional manifolds, No. 1, 2 (Trieste, 2001), ICTP Lect. Notes, vol. 9, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2002, pp. 491–514. MR 2004a:57042

    Google Scholar 

  68. Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 86k:11022

    MATH  Google Scholar 

  69. Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York, 1979, Translated from the French by Marvin Jay Greenberg. MR 82e:12016

    Google Scholar 

  70. R.W. Sharpe, On the structure of the unitary Steinberg group, Ann. of Math. (2) 96 (1972), 444–479. MR 47 #8617

    Article  MathSciNet  Google Scholar 

  71. L. Taylor, Surgery on paracompact manifolds, Ph.d. thesis, UC at Berkeley, 1972.

    Google Scholar 

  72. R.W. Thomason, The homotopy limit problem, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) (Providence, R.I.), Contemp. Math., vol. 19, Amer. Math. Soc., 1983, pp. 407–419. MR 84j:18012

    Google Scholar 

  73. R.W. Thomason, Erratum: “Algebraic K -theory and ´etale cohomology” [Ann. Sci. ´Ecole Norm. Sup. (4) 18 (1985), no. 3, 437–552; mr:0826102 (87k:14016)], Ann. Sci. ´Ecole Norm. Sup. (4) 22 (1989), no. 4, 675–677. MR 91j:14013

    Google Scholar 

  74. Robert W. Thomason, First quadrant spectral sequences in algebraic K -theory via homotopy colimits, Comm. Algebra 10 (1982), no. 15, 1589–1668. MR 83k:18006

    Article  MATH  MathSciNet  Google Scholar 

  75. Wolrad Vogell, The involution in the algebraic K -theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983), Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 277–317. MR 87e:55009

    Google Scholar 

  76. Wolrad Vogell, Algebraic K -theory of spaces, with bounded control, Acta Math. 165 (1990), no. 3-4, 161–187. MR 92b:19001

    Article  MATH  MathSciNet  Google Scholar 

  77. Wolrad Vogell, Boundedly controlled algebraic K -theory of spaces and its linear counterparts, J. Pure Appl. Algebra 76 (1991), no. 2, 193–224. MR 92m:19004

    Article  MATH  MathSciNet  Google Scholar 

  78. J.B. Wagoner, Delooping classifying spaces in algebraic K -theory, Topology 11 (1972), 349–370. MR 50 #7293

    Article  MATH  MathSciNet  Google Scholar 

  79. Friedhelm Waldhausen, Algebraic K -theory of spaces, a manifold approach, Current trends in algebraic topology, Part 1 (London, Ont., 1981), CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 141–184. MR 84f:18025

    Google Scholar 

  80. Friedhelm Waldhausen, Algebraic K -theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983), Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 318–419. MR 86m:18011

    Google Scholar 

  81. Friedhelm Waldhausen, Algebraic K -theory of spaces, concordance, and stable homotopy theory,Algebraic topology and algebraic K-theory (Princeton, N.J., 1983), Ann.of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 392–417. MR 89b:57019

    Google Scholar 

  82. Friedhelm Waldhausen, An outline of how manifolds relate to algebraic K -theory, Homotopy theory (Durham, 1985), London Math. Soc. Lecture Note Ser., vol. 117, Cambridge Univ. Press, Cambridge, 1987, pp. 239–247. MR 89c:18017

    Google Scholar 

  83. Friedhelm Waldhausen and Wolrad Vogell, Spaces of pl manifolds and categories of simple maps (the non-manifold part), preprint, Bielefeld University.

    Google Scholar 

  84. Friedhelm Waldhausen and Wolrad Vogell, Spaces of pl manifolds and categories of simple maps (the manifold part), preprint, Bielefeld University.

    Google Scholar 

  85. C.T.C. Wall, On the axiomatic foundations of the theory of Hermitian forms, Proc. Cambridge Philos. Soc. 67 (1970), 243–250. MR 40 #4285

    Article  MATH  MathSciNet  Google Scholar 

  86. C.T.C. Wall, On the classification of hermitian forms. I. Rings of algebraic integers, Compositio Math. 22 (1970), 425–451. MR 43 #7425

    MATH  MathSciNet  Google Scholar 

  87. C.T.C. Wall, Surgery on compact manifolds, Academic Press, London, 1970, London Mathematical Society Monographs, No. 1. MR 55 #4217

    MATH  Google Scholar 

  88. C.T.C. Wall, Foundations of algebraic L -theory, Algebraic K-theory, III: Hermitian K-theory and geometric applications (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, pp. 266–300. Lecture Notes in Math., Vol. 343. MR 50 #10018

    Google Scholar 

  89. C.T.C. Wall, Classification of Hermitian Forms. VI. Group rings, Ann. of Math. (2) 103 (1976), no. 1, 1–80. MR 55 #5720

    Article  MathSciNet  Google Scholar 

  90. Michael Weiss and Bruce Williams,Automorphisms of manifolds and algebraic K -theory. I, K-Theory 1 (1988), no. 6, 575–626. MR 89h:57012

    Article  MATH  MathSciNet  Google Scholar 

  91. Michael Weiss and Bruce Williams, Automorphisms of manifolds and algebraic K -theory. II, J. Pure Appl. Algebra 62 (1989), no. 1, 47–107. MR 91e:57055

    Article  MATH  MathSciNet  Google Scholar 

  92. Michael Weiss and Bruce Williams, Duality in Waldhausen categories, Forum Math. 10 (1998), no. 5, 533–603. MR 99g:19002

    Article  MATH  MathSciNet  Google Scholar 

  93. Michael Weiss and Bruce Williams, Automorphisms of manifolds, Surveys on surgery theory, Vol. 2, Ann. of Math. Stud., vol. 149, Princeton Univ. Press, Princeton, NJ, 2001, pp. 165–220. MR 2002a:57041

    Google Scholar 

  94. Michael S. Weiss and Bruce Williams, Products and duality in Waldhausen categories, Trans. Amer. Math. Soc. 352(2000), no. 2, 689–709. MR2000c:19005

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Williams, B. (2005). Quadratic K-Theory and Geometric Topology. In: Friedlander, E., Grayson, D. (eds) Handbook of K-Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27855-9_13

Download citation

Publish with us

Policies and ethics