Skip to main content

Computational Problems in Perfect Phylogeny Haplotyping: Xor-Genotypes and Tag SNPs

  • Conference paper
Combinatorial Pattern Matching (CPM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3109))

Included in the following conference series:

Abstract

The perfect phylogeny model for haplotype evolution has been successfully applied to haplotype resolution from genotype data. In this study we explore the application of the perfect phylogeny model to other problems in the design and analysis of genetic studies. We consider a novel type of data, xor-genotypes, which distinguish heterozygote from homozygote sites but do not identify the homozygote alleles. We show how to resolve xor-genotypes under perfect phylogeny model, and study the degrees of freedom in such resolutions. Interestingly, given xor-genotypes that produce a single possible resolution, we show that the full genotype of at most three individuals suffice in order to determine all haplotypes across the phylogeny. Our experiments with xor-genotyping data indicate that the approach requires a number of individuals only slightly larger than full genotyping, at a potentially reduced typing cost.

We also consider selection of minimum-cost sets of tag SNPs, i.e., polymorphisms whose alleles suffice to recover the haplotype diversity. We show that this problem lends itself to divide-and-conquer linear-time solution. Finally, we study genotype tags, i.e., genotype calls that suffice to recover the alleles of all other SNPs. Since most genetic studies are genotype-based, such tags are more relevant in such studies than the haplotype tags. We show that under the perfect phylogeny model a SNP subset of haplotype tags, as it is usually defined, tags the haplotypes by genotype calls as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sachidanandam, R., et al. (International SNP Map Working Group). A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409(6822), 928–933 (2001)

    Article  Google Scholar 

  2. Patil, N., et al.: Blocks of Limited Haplotype Diversity Revealed by High Resolution Scanning of Human Chromosome 21. Science 294(5547), 1719–1723 (2001)

    Article  Google Scholar 

  3. Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J., Lander, E.S.: High resolution haplotype structure in the human genome. Nature Genetics 29(2), 229–232 (2001)

    Article  Google Scholar 

  4. Jeffreys, A.J., Kauppi, L., Neumann, R.: Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nature Genetics 29(2), 109–111 (2001)

    Article  Google Scholar 

  5. Nachman, M.W., Crowell, S.L.: Estimate of the mutation rate per nucleotide in humans. Genetics 156(1), 297–304 (2000)

    Google Scholar 

  6. Gabriel, S.B., et al.: The structure of haplotype blocks in human genome. Science 296(5576), 2225–2229 (2002)

    Article  Google Scholar 

  7. Clark, A.: Inference of haplotypes from PCR-amplified samples of diploid populations. Molecular Biology and Evolution 7(2), 111–122 (1990)

    Google Scholar 

  8. Excoffier, L., Slatkin, M.: Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Molecular Biology and Evolution 12(5), 921–927 (1995)

    Google Scholar 

  9. Gusfield, D.: Haplotyping as Perfect Phylogeny: Conceptual Framework and Efficient Solutions. In: Proceedings of the Sixth Annual International Conference on Computational Biology 2002 (RECOMB 2002), pp. 166–75 (2002)

    Google Scholar 

  10. Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as Perfect Phylogenty: A direct approach. Technical Report U.C. Davis CSE-2002-21 (2002)

    Google Scholar 

  11. Eskin, E., Halperin, E., Karp, R.: Efficient reconstruction of haplotype structure via perfect phylogeny. Journal of Bioinformatics and Computational Biology (JBCB) (2003) (to appear)

    Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability, p. 222. Freeman, New York (1979)

    MATH  Google Scholar 

  13. Bafna, V., Halldórsson, B.V., Schwartz, R., Clark, A.G., Istrail, S.: Haplotypes and informative SNP selection algorithms: don’t block out information. In: Proceedings of the Seventh Annual International Conference on Computational Biology 2003 (RECOMB 2003), pp. 19–27 (2003)

    Google Scholar 

  14. Xiao, W., Oefner, P.J.: Denaturing high-performance liquid chromatography: A review. Human Mutation 17(6), 439–474 (2001)

    Article  Google Scholar 

  15. Bixby, R.E., Wagner, D.: An almost linear-time algorithm for graph realization, Mathematics of Operations Research . vol.13(1), pp. 99–123 (1988)

    Google Scholar 

  16. Tutte, W.T.: An Algorithm for determining whether a given binary matroid is graphic. Proceedings of American Mathematical Society 11, 905–917 (1960)

    MathSciNet  Google Scholar 

  17. Gavril, F., Tamari, R.: An algorithm for constructing edge-trees from hypergraphs. Networks 13, 377–388 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhang, K., Deng, M., Chen, T., Waterman, M.S., Sun, F.: A dynamic programming algorithm for haplotype block partitioning. In: Proceedings of the National Academy of Sciences,vol. 99, pp. 7335–7339 (2002)

    Google Scholar 

  19. Chung, R.H., Gusfield, D.: Perfect Phylogeny Haplotyper: Haplotype Inferral Using a Tree Model. Bioinformatics 19(6), 780–781 (2002)

    Article  Google Scholar 

  20. Johnson, G.C., et al.: Haplotype tagging for the identification of common disease genes. Nature Genetics 29(2), 233–237 (2001)

    Article  Google Scholar 

  21. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  22. Hudson, R.: Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18(2), 337–338 (2002)

    Article  Google Scholar 

  23. Chung, R.H., Gusfield, D.: Empirical Exploration of Perfect Phylogeny Haplotyping and Haplotypers. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 5–19. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Sebastiani, P., Lazarus, R., Weiss, S.T., Kunkel, L.M., Kohane, I.S., Ramoni, M.F.: Minimal haplotype tagging. In: Proceedings of the National Academy of Sciences of the USA, vol.100(17), pp. 9900–9905 (2003)

    Google Scholar 

  25. Chapman, J.M., Cooper, J.D., Todd, J.A., Clayton, D.: Detecting disease associations due to linkage disequilibrium using haplotype tags: a class of tests and the determinants of statistical power. Human Heredity 56(1-3), 18–31 (2003)

    Article  Google Scholar 

  26. Kwok, P.: Genetic association by whole-genome analysis. Science 294(5547), 1669–1670 (2001)

    Article  Google Scholar 

  27. Pe’er, I., Beckmann, J.: Resolution of haplotypes and haplotype frequencies from SNP genotypes of pooled samples. In: Proceedings of the Seventh Annual International Conference on Computational Biology (RECOMB 2003), pp. 237–246 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barzuza, T., Beckmann, J.S., Shamir, R., Pe’er, I. (2004). Computational Problems in Perfect Phylogeny Haplotyping: Xor-Genotypes and Tag SNPs. In: Sahinalp, S.C., Muthukrishnan, S., Dogrusoz, U. (eds) Combinatorial Pattern Matching. CPM 2004. Lecture Notes in Computer Science, vol 3109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27801-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27801-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22341-2

  • Online ISBN: 978-3-540-27801-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics