Skip to main content

A Computational Model for RNA Multiple Structural Alignment

  • Conference paper
Combinatorial Pattern Matching (CPM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3109))

Included in the following conference series:

Abstract

This paper addresses the problem of aligning multiple sequences of non-coding RNA genes. We approach this problem with the biologically motivated paradigm that scoring of ncRNA alignments should be based primarily on secondary structure rather than nucleotide conservation. We introduce a novel graph theoretic model (NLG) for analyzing algorithms based on this approach, prove that the RNA multiple alignment problem is NP-Complete in this model, and present a polynomial time algorithm that approximates the optimal structure of size S within a factor of O(log2 S).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bafna, V., Huson, D.: The conserved exon method for gene finding. In: Proceedings of the Fifth International Conference on Intelligent Systems for Molecular Biology, pp. 3–12 (2000)

    Google Scholar 

  2. Batzoglou, S., Pachter, L., Mesirov, J.P., Berger, B., Lander, E.: Human and mouse gene structure: Comparative analysis and application to exon prediction. Genome Research 10, 950–958 (2000)

    Article  Google Scholar 

  3. Bonizzoni, P., Vedova, G.D.: The complexity of multiple sequence alignment with SP-score that is a metric. Theoretical Computer Science 259, 63–79 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cook, S.: The complexity of theorem-proving procedures. In: Proceedings of the Third ACM Symposium on Theory of Computing, pp. 151–158 (1971)

    Google Scholar 

  5. Eddy, S., Noncoding, R.N.A.: genes and the modern RNA world. Nature Review Genetics 2, 919–929 (2001)

    Article  Google Scholar 

  6. Eddy, S.R.: Computational genomics of noncoding RNA genes. Cell 109, 137–140 (2002)

    Article  Google Scholar 

  7. Floyd, R.W.: Algorithm 97: Shortest path. Comm. ACM 5(345) (1962)

    Google Scholar 

  8. Hardison, R.C., Oeltjen, J., Miller, W.: Long Human-Mouse Sequence Alignments Reveal Novel Regulatory Elements: A Reason to Sequence the Mouse Genome. Genome Research 7, 959–966 (1997)

    Google Scholar 

  9. : Pairwise RNA Structure Comparison with Stoachastic Context-Free Grammars. In: Pacific Symposium on Biocomputing, vol. 7, pp. 175–186.

    Google Scholar 

  10. Jareborg, N., Birney, E., Durbin, R.: Comparative analysis of noncoding regions of 77 orthologous mouse and human gene pairs. Genome Research 9, 815–824 (1999)

    Article  Google Scholar 

  11. Kasami, T.: An efficient recognition and syntax algorithm for context-free languages. Technical Report AF-CRL-65-758, Air Force Cambridge Research Laboratory, Bedford, MA (1965)

    Google Scholar 

  12. Lowe, T.M., Eddy, S.R.: tRNAscan-SE: a Program For Improved Detection of Transfer RNA genes in Genomic Sequence. Nucleic Acids Research 25, 955–964 (1997)

    Article  Google Scholar 

  13. Nussinov, R., Pieczenik, G., Griggs, J.R., Kleitman, D.: Algorithms for loop matching. SIAM Journal of Applied Mathematics 35, 68–82 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pennacchio, L., Rubin, E.: Genomic strategies to identify mammalian regulatory sequences. Nature Reviews 2, 100–109 (2001)

    Article  Google Scholar 

  15. Rivas, E., Eddy, S.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. Journal of Molecular Biology 285, 2053–2068 (1999)

    Article  Google Scholar 

  16. Rivas, E., Eddy, S.: Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics 16, 573–583 (2000)

    Article  Google Scholar 

  17. Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. Journal of Computational Biology 1, 337–348 (1994)

    Article  Google Scholar 

  18. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9, 133–148 (1981)

    Article  Google Scholar 

  19. Zuker, M.: Computer Prediction of RNA structure. Methods in Enzymology 180, 262–288 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Davydov, E., Batzoglou, S. (2004). A Computational Model for RNA Multiple Structural Alignment. In: Sahinalp, S.C., Muthukrishnan, S., Dogrusoz, U. (eds) Combinatorial Pattern Matching. CPM 2004. Lecture Notes in Computer Science, vol 3109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27801-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27801-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22341-2

  • Online ISBN: 978-3-540-27801-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics