Skip to main content

Rates, Risks, Measures of Association and Impact

  • Chapter
Handbook of Epidemiology

Abstract

A major aim of epidemiologic research is to measure disease occurrence in relation to various characteristics such as exposure to environmental, occupational, or lifestyle risk factors, genetic traits or other features. In this chapter, various measures will be considered that quantify disease occurrence, associations between disease occurrence and these characteristics as well as their consequences in terms both of disease risk and impact at the population level. As is common practice, the generic term exposure will be used throughout the chapter to denote such characteristics. Emphasis will be placed on measures based on occurrence of new disease cases, referred to as disease incidence. Measures based on disease prevalence, i. e., considering newly occurring and previously existing disease cases as a whole will be considered more briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalen O (1978) Nonparametric estimation of partial transition probabilities in multiple decrement models. Annals of Statistics 6:534–545

    MATH  MathSciNet  Google Scholar 

  • Aalen O, Johansen S (1978) An empirical transition matrix for nonhomogeneous Markov chains based on censored observations. Scandinavian Journal of Statistics 5:141–150

    MATH  MathSciNet  Google Scholar 

  • American Cancer Society (1992) Cancer facts andfigures. American Cancer Society, Atlanta, Georgia

    Google Scholar 

  • Ames BN, Gold LS, Willett WC (1995) The causes and prevention of cancer. Proceedings of the National Academy of Sciences of the United States of America 254:1131–1138

    Google Scholar 

  • Andersen PK, Gill RD (1982) Cox’s regression models for counting processes: A large-sample study. Annals of Statistics 4:1100–1120

    MathSciNet  Google Scholar 

  • Anderson KM, Wilson PW, Odell PM, Kannel WB (1991) Cardiovascular disease risk profiles. A statement for health professionals. Circulation 83:356–362

    Google Scholar 

  • Anderson SJ, Ahnn S, Duff K (1992) NSABP Breast Cancer Prevention Trial Risk Assessment Program, Version 2. University of Pittsburgh Department of Biostatistics, Pittsburgh, PA

    Google Scholar 

  • Basu S, Landis JR (1995) Model-based estimation of population attributable risk under cross-sectional sampling. American Journal of Epidemiology 142:1338–1343

    Google Scholar 

  • Begg CB (2001) The search for cancer risk factors: When can we stop looking? American Journal of Public Health 91:360–364

    Google Scholar 

  • Begg CB, Satagopan JM, Berwick M (1998) A new strategy for evaluating the impact of epidemiologic risk factors for cancer with applications to melanoma. Journal of the American Statistical Association 93: 415–426

    Article  MATH  Google Scholar 

  • Benichou J (1991) Methods of adjustment for estimating the attributable risk in case-control studies: A review. Statistics in Medicine 10:1753–1773

    Article  Google Scholar 

  • Benichou J (1993a) A computer programfor estimating individualized probabilities of breast cancer. Computers and Biomedical Research 26:373–382

    Article  Google Scholar 

  • Benichou J (1993b) Re: “Methods of adjustment for estimating the attributable risk in case-control studies: A review” (letter). Statistics in Medicine 12:94–96

    Google Scholar 

  • Benichou J (2000a) Absolute risk. In: Gail MH, Benichou J (eds) Encyclopedia of epidemiologic methods. Wiley, Chichester, pp 1–17

    Google Scholar 

  • Benichou J (2000b) Attributable risk. In: Gail MH, Benichou J (eds) Encyclopedia of epidemiologic methods. Wiley, Chichester, pp 50–63

    Google Scholar 

  • Benichou J (2000c) Preventable fraction. In: Gail MH, Benichou J (eds) Encyclopedia of epidemiologic methods. Wiley, Chichester, pp 736–737

    Google Scholar 

  • Benichou J (2001) A review of adjusted estimators of the attributable risk. Statistical Methods in Medical Research 10:195–216

    Article  MATH  Google Scholar 

  • Benichou J, Gail MH (1989) A delta-method for implicitely defined random variables. American Statistician 43:41–44

    Article  MathSciNet  Google Scholar 

  • Benichou J, Gail MH (1990a) Estimates of absolute cause-specific risk in cohort studies. Biometrics 46:813–826

    Article  Google Scholar 

  • Benichou J, Gail MH (1990b) Variance calculations and confidence intervals for estimatesof the attributable risk based on logistic models. Biometrics 46:991–1003

    Article  Google Scholar 

  • Benichou J, Gail MH (1995) Methods of inference for estimates of absolute risk derived from population-based case-control studies. Biometrics 51:182–194

    Article  MATH  Google Scholar 

  • Benichou J, Wacholder S (1994) A comparison of three approaches to estimate exposure-specific incidence rates from population-based case-control data. Statistics in Medicine 13:651–661

    Article  Google Scholar 

  • Benichou J, Gail MH, Mulvihill JJ (1996) Graphs to estimate an individualized risk of breast cancer. Journal of Clinical Oncology 14:103–110

    Google Scholar 

  • Benichou J, Byrne C, Gail MH (1997) An approach to estimating exposure-specific rates of breast cancer from a two-stage case-control study within a cohort. Statistics in Medicine 16:133–151

    Article  Google Scholar 

  • Berkson J (1958) Smoking and lung cancer. Some observations on two recent reports. Journal of the American Statistical Association 53:28–38

    Google Scholar 

  • Birch MW (1964) The detection of partial associations, I: The 2 × 2 case. Journal of the Royal Statistical Society, Series B 27:313–324

    MathSciNet  Google Scholar 

  • Borgan Ø (1998) Nelson-Aalen estimator. In: Armitage P, Colton T (eds) Encyclopedia of epidemiologic methods. Wiley, Chichester, pp 2967–2972

    Google Scholar 

  • Breslow NE (1981) Odds ratio estimators when the data are sparse. Biometrika 68:73–84

    Article  MATH  MathSciNet  Google Scholar 

  • Breslow NE, Day NE (1980) Statistical methods in cancer research vol I: The analysis of case-control studies. International Agency for Research on Cancer Scientific Publications No. 32, Lyon

    Google Scholar 

  • Breslow NE, Day NE (1987) Statistical methods in cancer research vol II: The design and analysis of cohort studies. International Agency for Research on Cancer Scientific Publications No. 82, Lyon

    Google Scholar 

  • Breslow NE, Lubin JH, Marek P, Langholz B (1983) Multiplicative models and cohort analysis. Journal of the American Statistical Association 78:1–12

    Article  MATH  Google Scholar 

  • Bruzzi P, Green SB, Byar DP, Brinton LA, Schairer C (1985) Estimating the population attributable risk for multiple risk factors using case-control data. American Journal of Epidemiology 122:904–914

    Google Scholar 

  • Chiang CL (1968) Introduction to stochastic processes in biostatistics. Wiley, New York

    MATH  Google Scholar 

  • Colditz G, DeJong W, Hunter D, Trichopoulos D, Willett W (eds) (1996) Harvard report on cancer prevention, vol 1. Cancer Causes and Control 7(suppl.):S3–S59

    Google Scholar 

  • Colditz G, DeJong W, Hunter D, Trichopoulos D, Willett W (eds) (1997) Harvard report on cancer prevention, vol 2. Cancer Causes and Control 8(suppl.):S1–S50

    Google Scholar 

  • Cole P, MacMahon B (1971) Attributable risk percent in case-control studies. British Journal of Preventive and Social Medicine 25:242–244

    Google Scholar 

  • Cornfield J (1951) A method for estimating comparative rates from clinical data: Applications to cancer of the lung, breast and cervix. Journal of the National Cancer Institute 11:1269–1275

    Google Scholar 

  • Cornfield J (1956) A statistical problem arising from retrospective studies. In: Neyman J (ed) Proceedings of the Third Berkeley Symposium, vol IV. University of California Press, Monterey, pp 133–148

    Google Scholar 

  • Cornfield J, Haenszel W, Hammond EC, Lilienfeld AM, Shimkin MB, Wynder EI (1959) Smoking and lung cancer: recent evidence and a discussion of some questions. Journal of the National Cancer Institute 22:173–203

    Google Scholar 

  • Costantino JP, Gail MH, Pee D, Anderson S, Redmond CK, Benichou J, Wieand HS (1999) Validation studies for models projecting the risk of invasive and total breast cancer incidence. Journal of the National Cancer Institute 91:1541–1548

    Article  Google Scholar 

  • Coughlin SS, Benichou J, Weed DL (1994) Attributable risk estimation in case-control studies. Epidemiologic Reviews 16:51–64

    Google Scholar 

  • Cox DR (1972) Regression models and lifetables (with discussion). Journal of the Royal Statistical Society, Series B 34:187–220

    MATH  Google Scholar 

  • Cox DR (1975) Partial likelihood. Biometrika 62:269–276

    Article  MATH  MathSciNet  Google Scholar 

  • Cox LA (1984) Probability of causation and the attributable proportion of risk. Risk Analysis 4:221–230

    Article  Google Scholar 

  • Cox LA (1985) A new measure of attributable risk for public health applications. Management Science 7:800–813

    Google Scholar 

  • Cutler SJ, Ederer F (1958) Maximum utilization of the life table method in analyzing survival. Journal of Chronic Diseases 8:699–712

    Article  Google Scholar 

  • Daly LE (1998) Confidence limits made easy: interval estimation using a substitution method. American Journal of Epidemiology 147:783–790

    Google Scholar 

  • Deubner DC, Wilkinson WE, Helms MJ, Tyroler HA, Hames CG (1980) Logistic model estimation of death attributable to risk factors for cardiovascular disease in Evans County, Georgia. American Journal of Epidemiology 112:135–143

    Google Scholar 

  • Doll R, Peto R (1981) The causes of cancer. Oxford University Press, New York

    Google Scholar 

  • Dorey FJ, Korn EL (1987) Effective sample sizes for confidence intervals for survival probabilities. Statistics in Medicine 6:679–687

    Article  Google Scholar 

  • Drescher K, Becher H (1997) Estimating the generalized attributable fraction from case-control data. Biometrics 53:1170–1176

    Article  MATH  Google Scholar 

  • Dupont DW (1989) Converting relative risks to absolute risks: A graphical approach. Statistics in Medicine 8:641–651

    Article  Google Scholar 

  • Easton DF, Peto J, Babiker AG (1991) Floating absolute risk: An alternative to relative risk in survival and case-control analysis avoiding an arbitrary reference group. Statistics in Medicine 10:1025–1035

    Article  Google Scholar 

  • Eide GE, Gefeller O (1995) Sequential and average attributable fractions as aids in the selection of preventive strategies. Journal of Clinical Epidemiology 48:645–655

    Article  Google Scholar 

  • Eide GE, Heuch I (2001) Attributable fractions: fundamental concepts and their vizualization. Statistical Methods in Medical Research 10:159–193

    Article  MATH  Google Scholar 

  • Ejigou A (1979) Estimation of attributable risk in the presence of confounding. Biometrical Journal 21:155–165

    Article  MATH  Google Scholar 

  • Elandt-Johnson RC (1977) Various estimators of conditional probabilities of death in follow-up studies. Summary of results. Journal of Chronic Diseases 30:247–256

    Article  Google Scholar 

  • Elveback L (1958) Estimation of survivorship in chronic disease: The “actuarial” method. Journal of the American Statistical Association 53:420–440

    Article  MATH  Google Scholar 

  • Fleiss JL (1979) Inference about population attributable risk from cross-sectional studies. American Journal of Epidemiology 110:103–104

    Google Scholar 

  • Fleiss JL, Dunner DL, Stallone F, Fieve RR (1976) The life table: A method for analyzing longitudinal studies. Archives of General Psychiatry 33:107–112

    Google Scholar 

  • Fisher B, Costantino JP, Wickerham L, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, Tan-Chiu E, Ford L, Womark N, other National Surgical Adjuvant Breast and Bowel project Investigators (1998) Tamoxifen for prevention of breast cancer: Report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. Journal of the National Cancer Institute 90:1371–1388

    Article  Google Scholar 

  • Gail MH (1975) Measuring the benefit of reduced exposure to environmental carcinogens. Journal of Chronic Diseases 28:135–147

    Article  Google Scholar 

  • Gail MH, Benichou J (1994) Validation studies on a model for breast cancer risk (editorial). Journal of the National Cancer Institute 86:573–575

    Article  Google Scholar 

  • Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, Mulvihill JJ (1989) Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. Journal of the National Cancer Institute 81:1879–1886

    Article  Google Scholar 

  • Gail MH, Costantino JP, Bruant J, Croyle R, Freedman L, Helzsouer K, Vogel V (1999) Weighing the risks and benefits of Tamoxifen treatment for preventing breast cancer. Journal of the National Cancer Institute 91:1829–1846

    Article  Google Scholar 

  • Gargiullo PM, Rothenberg R, Wilson HG (1995) Confidence intervals, hypothesis tests, and sample sizes for the prevented fraction in cross-sectional studies. Statistics in Medicine 14:51–72

    Article  Google Scholar 

  • Gefeller O (1990) Theory and application of attributable risk estimation in cross-sectional studies. Statistica Applicata 2:323–331

    Google Scholar 

  • Gefeller O (1992) The bootstrap method for standard errors and confidence intervals of the adjusted attributable risk [letter]. Epidemiology 3:271–272

    Article  Google Scholar 

  • Gefeller O (1995) Definitions of attributable risk-revisited. Public Health Reviews 23:343–355

    Google Scholar 

  • Gefeller O, Land M, Eide GE (1998) Averaging attributable fractions in the multifactorial situation: Assumptions and interpretation. Journal of Clinical Epidemiology 51:437–451

    Article  Google Scholar 

  • Gray RJ (1988) A class of k-sample tests for comparing the cumulative incidence of a competing risk. Annals of Statistics 16:1141–1151

    MATH  MathSciNet  Google Scholar 

  • Greenland S (1981) Multivariate estimation of exposure-specific incidence from case-control studies. Journal of Chronic Diseases 34:445–453

    Article  Google Scholar 

  • Greenland S (1984) Bias in methods for deriving standardized mortality ratio and attributable fraction estimates. Statistics in Medicine 3:131–141

    Article  Google Scholar 

  • Greenland S (1987) Variance estimators for attributable fraction estimates, consistent in both large strata and sparse data. Statistics in Medicine 6:701–708

    Article  Google Scholar 

  • Greenland S (1992) The bootstrap method for standard errors and confidence intervals of the adjusted attributable risk [letter]. Epidemiology 3:271

    Article  Google Scholar 

  • Greenland S (2001) Attributable fractions: bias from broad definition of exposure. Epidemiology 12:518–520

    Article  Google Scholar 

  • Greenland S, Drescher K (1993) Maximum-likelihood estimation of the attributable fraction from logistic models. Biometrics 49:865–872

    Article  MATH  Google Scholar 

  • Greenland S, Morgenstern H (1983) Morgenstern corrects a conceptual error [letter]. American Journal of Public Health 73:703–704

    Google Scholar 

  • Greenland S, Robins JM (1988) Conceptual problems in the definition and interpretation of attributable fractions. American Journal of Epidemiology 128:1185–1197

    Google Scholar 

  • Greenland S, Thomas DC (1982) On the need for the rare disease assumption. American Journal of Epidemiology 116:547–553

    Google Scholar 

  • Hartman LC, Sellers TA, Schaid DJ, Franks TS, Soderberg CL, Sitta DL, Frost MH, Grant CS, Donohue JH, Woods JE, McDonnell SK, Vockley CW, Deffenbaugh A, Couch FJ, Jenkins RB (2001) Efficacy of bilateral prophylactic mastectomy in BRCA1 and BRCA2 gene mutation carriers. Journal of the National Cancer Institute 93:1633–1637

    Article  Google Scholar 

  • Henderson BE, Ross RK, Pike MC (1991) Toward the primary prevention of cancer. Science 254:1131–1138

    Article  Google Scholar 

  • Holford TR (1980) The analysis of rates and of survivorship using log-linear models. Biometrics 36:299–305

    Article  MATH  Google Scholar 

  • Hosmer D, Lemeshow S (1999) Applied survival analysis: Regression modeling of time to event data. John Wiley & Sons, Hoboken, New Jersey

    MATH  Google Scholar 

  • Hoskins KF, Stopfer JE, Calzone K, Merajver SD, Rebbeck TR, Garber JE, Weber BL (1995) Assessment and counseling for women with a family history of breast cancer. A guide for clinicians. Journal of the American Medical Association 273:577–585

    Article  Google Scholar 

  • Johnson NL, Kotz S (1970) Distributions in statistics, vol 2. Houghton-Mifflin, Boston

    MATH  Google Scholar 

  • Kahn HA, Sempos CT (1989) Statistical methods in epidemiology. Monographs in epidemiology and biostatistics, vol 12, Oxford University Press, Oxford, New York

    Google Scholar 

  • Kahn MJ, O’Fallon WM, Sicks JD (1998) Generalized population attributable risk estimation. Technical Report #54, Mayo Foundation, Rochester, Minnesota

    Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53:457–481

    Article  MATH  MathSciNet  Google Scholar 

  • Katz D, Baptista J, Azen SP, Pike MC (1978) Obtaining confidence intervals for the risk ratio in a cohort study. Biometrics 34:469–474

    Article  Google Scholar 

  • Kay R, Schumacher M (1983) Unbiased assessment of treatment effects on disease recurrence and survival in clinical trials. Statistics in Medicine 2:41–58

    Article  Google Scholar 

  • Keiding N, Andersen PK (1989) Nonparametric estimation of transition intensities and transition probabilities: A case study of a two-state Markov process. Applied Statistics 38:319–329

    Article  MATH  MathSciNet  Google Scholar 

  • Kleinbaum DG, Kupper LL, Morgenstern H (1982) Epidemiologic research: Principles and quantitative methods. Lifetime Learning Publications, Belmont

    Google Scholar 

  • Kooperberg C, Petitti DB (1991) Using logistic regression to estimate the adjusted attributable risk of low birthweight in an unmatched case-control study. Epidemiology 2:363–366

    Article  Google Scholar 

  • Korn EL, Dorey FJ (1992) Applications of crude incidence curves. Statistics in Medicine 11:813–829

    Article  Google Scholar 

  • Kuritz SJ, Landis JR (1987) Attributable risk estimation from matched-pairs case-control data. American Journal of Epidemiology 125:324–328

    Google Scholar 

  • Kuritz SJ, Landis JR (1988a) Summary attributable risk estimation from unmatched case-control data. Statistics in Medicine 7:507–517

    Article  Google Scholar 

  • Kuritz SJ, Landis JR (1988b) Attributable risk estimation from matched case-control data. Biometrics 44:355–367

    Article  MATH  MathSciNet  Google Scholar 

  • Lagakos SW, Mosteller F (1986) Assigned shares in compensation for radiation-related cancers (with discussion). Risk Analysis 6:345–380

    Article  Google Scholar 

  • Laird N, Oliver D (1981) Covariance analysis of censored survival data using log-linear analysis techniques. Journal of the American Statistical Association 76:231–240

    Article  MATH  MathSciNet  Google Scholar 

  • Land M, Gefeller O (1997) A game-theoretic approach to partitioning attributable risks in epidemiology. Biometrical Journal 39:777–792

    Article  MATH  MathSciNet  Google Scholar 

  • Land M, Vogel C, Gefeller O (2001) Partitioning methods for multifactorial risk attribution. Statistical Methods in Medical Research 10:217–230

    Article  MATH  Google Scholar 

  • Landis JR, Heyman ER, Koch GG (1978) Average partial association in three-way contingency tables: A review and discussion of alternative tests. International Statistical Review 46:237–254

    MATH  MathSciNet  Google Scholar 

  • Landis JR, Sharp TJ, Kuritz SJ, Koch G (2000) Mantel-Haenszel methods. In: Gail MH, Benichou J (eds) Encyclopedia of epidemiologic methods, Wiley, Chichester, pp 499–512

    Google Scholar 

  • Langholz B, Borgan Ø (1997) Estimation of absolute risk from nested case-control data. Biometrics 53:767–774

    Article  MATH  Google Scholar 

  • Last JM (1983) A dictionary of epidemiology. Oxford University Press, New York

    Google Scholar 

  • Leung HM, Kupper LL (1981) Comparison of confidence intervals for attributable risk. Biometrics 37:293–302

    Article  MATH  Google Scholar 

  • Levin ML (1953) The occurrence of lung cancer in man. Acta Unio Internationalis contra Cancrum 9:531–541

    Google Scholar 

  • Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22

    Article  MATH  MathSciNet  Google Scholar 

  • Liddell JC, McDonald JC, Thomas DC (1977) Methods of cohort analysis: Appraisal by application to asbestos mining (with discussion). Journal of the Royal Statistical Society, Series A 140:469–491

    Article  Google Scholar 

  • Lin DY, Psaty BM, Kronmal RA (1998) Assessing the sensitivity of regression results to unmeasured confounders in observational studies. Biometrics 54:948–963

    Article  MATH  Google Scholar 

  • Littell AS (1952) Estimation of the t-year survival rate from follow-up studies over a limited period of time. Human Biology 24:87–116

    Google Scholar 

  • Llorca J, Delgado-Rodriguez M (2000) A comparison of several procedures to estimate the confidence interval for attributable risk in case-control studies. Statistics in Medicine 19:1089–1099

    Article  Google Scholar 

  • Lubin JH, Boice JD Jr (1989) Estimating Rn-induced lung cancer in the United States. Health Physics 57:417–427

    Article  Google Scholar 

  • Lui KJ (2001a) Interval estimation of the attributable risk in case-control studies with matched pairs. Journal of Epidemiology and Community Health 55:885–890

    Article  Google Scholar 

  • Lui KJ (2001b) Notes on interval estimation of the attributable risk in crosssectional sampling. Statistics in Medicine 20:1797–1809

    Article  Google Scholar 

  • Lui KJ (2003) Interval estimationof the attributable risk for multiple exposure levels in case-control studies with confounders. Statistics in Medicine 22:2443–2557

    Article  Google Scholar 

  • Lynch HT, Lynch JF, Rubinstein WS (2001) Prophylactic mastectomy: obstacles and benefits (editorial). Journal of the National Cancer Institute 93:1586–1587

    Article  Google Scholar 

  • MacMahon B (1962) Prenatal X-ray exposure and childhood cancer. Journal of the National Cancer Institute 28:1173–1191

    Google Scholar 

  • MacMahon B, Pugh TF (1970) Epidemiology: Principles and methods. Little, Brown and Co, Boston

    Google Scholar 

  • Madigan MP, Ziegler RG, Benichou J, Byrne C, Hoover RN (1995) Proportion of breast cancer cases in the United States explained by well-established risk factors. Journal of the National Cancer Institute 87:1681–1685

    Article  Google Scholar 

  • Mantel N (1973) Synthetic retrospective studies and related topics. Biometrics 29:479–486

    Article  Google Scholar 

  • Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute 22:719–748

    Google Scholar 

  • Markush RE (1977) Levin’s attributable risk statistic for analytic studies and vital statistics. American Journal of Epidemiology 105:401–406

    Google Scholar 

  • Matthews DE (1988) Likelihood-based confidence intervals for functions of many parameters. Biometrika 75:139–144

    Article  MATH  MathSciNet  Google Scholar 

  • Mausner JS, Bahn AK (1974) Epidemiology: An introductory text. W.B. Saunders, Philadelphia

    Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  • McElduff P, Attia J, Ewald B, Cockburn J, Heller R (2002) Estimating the contribution of individual risk factors to disease in a person with more than one risk factor. Journal of Clinical Epidemiology 55:588–592

    Article  Google Scholar 

  • Mehta CR, Patel R, Senchaudhuri P (2000) Efficient Monte Carlo methods for conditional logistic regression. Journal of the American Statistical Association 95:99–108

    Article  Google Scholar 

  • Mezzetti M, Ferraroni M, Decarli A, La Vecchia C, Benichou J (1996) Software for attributable risk and confidence interval estimation in case-control studies. Computers and Biomedical Research 29:63–75

    Article  Google Scholar 

  • Miettinen OS (1972) Components of the crude risk ratio. American Journal of Epidemiology 96:168–172

    Google Scholar 

  • Miettinen OS (1974) Proportion of disease caused or prevented by a given exposure, trait or intervention. American Journal of Epidemiology 99:325–332

    Google Scholar 

  • Miettinen OS (1976) Estimability and estimation in case-referent studies. American Journal of Epidemiology 103:226–235

    Google Scholar 

  • Morgenstern H (1982) Uses of ecologic analysis in epidemiological research. American Journal of Public Health 72:1336–1344

    Google Scholar 

  • Morgenstern H, Bursic ES (1982) A method for using epidemiologic data to estimate the potential impact of an intervention on the health status of a target population. Journal of Community Health 7:292–309

    Article  Google Scholar 

  • Morgenstern H, Kleinbaum D, Kupper LL (1980) Measures of disease incidence used in epidemiologic research. International Journal of Epidemiology 9:97–104

    Article  Google Scholar 

  • Neuhaus JM, Jewell NP (1990) The effect of retrospective sampling on binary regression models for clustered data. Biometrics 46:977–990

    Article  Google Scholar 

  • Neutra RR, Drolette ME (1978) Estimating exposure-specific disease rates from case-control studies using Bayes’ theorem. American Journal of Epidemiology 108:214–222

    Google Scholar 

  • Oakes D (1981) Survival times: Aspects of partial likelihood (with discussion). International Statistical Review 49:235–264

    Article  MATH  MathSciNet  Google Scholar 

  • Ouellet BL, Romeder JM, Lance JM (1979) Premature mortality attributable to smoking and hazardous drinking in Canada. American Journal of Epidemiology 109:451–463

    Google Scholar 

  • Palta M, Lin C-Y, Chao W (1997) Effect of confounding and other misspecification in models for longitudinal data. In: Modeling longitudinal and spatially correlated data. Lecture Notes in Statistics Series 122. Proceeding of the Nantucket Conference on Longitudinal and Correlated Data. Springer-Verlag, Heidelberg, New York, pp 77–88

    Google Scholar 

  • Palta M, Lin C-Y (1999) Latent variables, measurement error and methods for analyzing longitudinal binary and ordinal data. Statistics in Medicine 18:385–396

    Article  Google Scholar 

  • Palta M (2003) Quantitative methods in population health: Extensions of ordinary regression. John Wiley & Sons, Hoboken, New Jersey

    MATH  Google Scholar 

  • Prentice RL, Breslow NE (1978) Retrospective studies and failure time models. Biometrika 65:153–158

    Article  MATH  Google Scholar 

  • Prentice RL, Kalbfleisch JD, Peterson AV, Flournoy N, Farewell VT, Breslow NE (1978) The analysis of failure times in the presence of competing risks. Biometrics 34:541–554

    Article  MATH  Google Scholar 

  • Prentice RL, Pyke R (1979) Logistic disease incidence models and case-control studies. Biometrika 66:403–411

    Article  MATH  MathSciNet  Google Scholar 

  • Rao CR (1965) Linear statistical inference and its application. John Wiley, New York, pp 319–322

    Google Scholar 

  • Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Mariotto A, Feuer EJ, Edwards BK (eds) (2004) SEER Cancer Statistics Review, 1975–2001, National Cancer Institute. Bethesda, MD. (http://seer.cancer.gov/csr/1975_2001) Accessed May 21, 2004

    Google Scholar 

  • Robins JM, Greenland S (1989) Estimability and estimation of excess and etiologic fractions. Statistics in Medicine 8:845–859

    Article  Google Scholar 

  • Rockhill B, Newman B, Weinberg C (1998) Use and misuse of population attributable fractions. American Journal of Public Health 88:15–21

    Article  Google Scholar 

  • Rockhill B, Weinberg C, Newman B (1998) Population attributable fraction estimation for established breast cancer risk factors: considering the issues of high prevalence and unmodifyability. American Journal of Epidemiology 147:826–833

    Google Scholar 

  • Rothman KJ, Greenland S (1998) Modern epidemiology. Lippincott-Raven, Philadelphia.

    Google Scholar 

  • SAS Institute Inc. (1999) SAS/STAT user’s guide. Version 8. SAS Institute Inc, Cary, NC

    Google Scholar 

  • Schlesselman JJ (1982) Case-control studies. Design, conduct and analysis. Oxford University Press, New York

    Google Scholar 

  • Seiler FA (1986) Attributable risk, probability of causation, assigned shares, and uncertainty. Environment International 12:635–641

    Article  Google Scholar 

  • Seiler FA, Scott BR (1986) Attributable risk, probability of causation, assigned shares, and uncertainty. Environment International 12:635–641

    Article  Google Scholar 

  • Siemiatycki J, Wacholder S, Dewar R, Cardis E, Greenwood C, Richardson L (1988) Degree of confounding bias related to smoking, ethnic group and SES in estimates of the associations between occupation and cancer. J Occup Med 30:617–625

    Article  Google Scholar 

  • Smith L (1998) Person-years of life lost. In: Armitage P, Colton T (eds) Encyclopedia of biostatistics. Wiley, Chichester, pp 3324–3325

    Google Scholar 

  • Spiegelman D, Colditz GA, Hunter D, Hetrzmark E (1994) Validation of the Gail et al model for predicting individual breast cancer risk. Journal of the National Cancer Institute 86:600–607

    Article  Google Scholar 

  • Sturmans F, Mulder PGH, Walkenburg HA (1977) Estimation of the possible effect of interventive measures in the area of ischemic heart diseases by the attributable risk percentage. American Journal of Epidemiology 105:281–289

    Google Scholar 

  • Tarone RE (1981) On summary estimators of relative risk. Journal of Chronic Diseases 34:463–468

    Article  Google Scholar 

  • Tsiatis AA (1981) A large-sample study of Cox’s regression model. Annals of Statistics 9:93–108

    MATH  MathSciNet  Google Scholar 

  • Tuyns AJ, Pequignot G, Jensen OM (1977) Le cancer de l’oesophage en Ille-et-Vilaine en fonction des niveaux de consommation d’alcool et de tabac. Bulletin of Cancer 64:45–60

    Google Scholar 

  • US National Cancer Institute (2004) Breast cancer risk assessment tool. An interactive tool to measure a woman’s risk of invasive breast cancer. (http://bcra.nci.nih.gov/brc) Accessed May 12, 2004

    Google Scholar 

  • Uter W, Pfahlberg A (1999) The concept of attributable risk in epidemiological practice. Biometrical Journal 41:985–999

    Article  MATH  Google Scholar 

  • Uter W, Pfahlberg A (2001) The application of methods to quantify attributable risk in medical practice. Statistical Methods in Medical Research 10:231–237

    Article  MATH  Google Scholar 

  • Wacholder S, Benichou J, Heineman EF, Hartge P, Hoover RN (1994) Attributable risk: Advantages of a broad definition of exposure. American Journal of Epidemiology 140:303–309

    Google Scholar 

  • Wahrendorf J (1987) An estimate of the proportion of colo-rectal and stomach cancers which might be prevented by certain changes in dietary habits. International Journal of Cancer 40:625–628

    Article  Google Scholar 

  • Walter SD (1975) The distribution of Levin’s measure of attributable risk. Biometrika 62:371–374

    Article  MATH  Google Scholar 

  • Walter SD (1976) The estimation and interpretation of attributable risk in health research. Biometrics 32:829–849

    Article  MATH  Google Scholar 

  • Walter SD (1980) Prevention for multifactorial diseases. American Journal of Epidemiology 112:409–416

    Google Scholar 

  • Walter SD (1983) Effects of interaction, confounding and observational error on attributable risk estimation. American Journal of Epidemiology 117:598–604

    Google Scholar 

  • Whittemore AS (1982) Statistical methods for estimating attributable risk from retrospective data. Statistics in Medicine 1:229–243

    Article  Google Scholar 

  • Whittemore AS (1983) Estimating attributable risk from case-control studies. American Journal of Epidemiology 117:76–85

    Google Scholar 

  • Wooldridge JM (2001) Econometric analysis of cross section and panel data. MIT Press, Boston

    Google Scholar 

  • Woolf B (1955) On estimating the relationship between blood group and disease. Annals of Human Genetics 19:251–253

    Google Scholar 

  • Wu K, Brown P (2003) Is low-dose Tamoxifen useful for the treatment and prevention of breast cancer (editorial)? Journal of theNational Cancer Institute 95:766–767

    Google Scholar 

  • Zhang J, Yu KF (1998) What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 280:1690–1691

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benichou, J., Palta, M. (2005). Rates, Risks, Measures of Association and Impact. In: Ahrens, W., Pigeot, I. (eds) Handbook of Epidemiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-26577-1_3

Download citation

Publish with us

Policies and ethics