Skip to main content

A Novel Multi-objective Orthogonal Simulated Annealing Algorithm for Solving Multi-objective Optimization Problems with a Large Number of Parameters

  • Conference paper
Genetic and Evolutionary Computation – GECCO 2004 (GECCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3102))

Included in the following conference series:

Abstract

In this paper, a novel multi-objective orthogonal simulated annealing algorithm MOOSA using a generalized Pareto-based scale-independent fitness function and multi-objective intelligent generation mechanism (MOIGM) is proposed to efficiently solve multi-objective optimization problems with large parameters. Instead of generate-and-test methods, MOIGM makes use of a systematic reasoning ability of orthogonal experimental design to efficiently search for a set of Pareto solutions. It is shown empirically that MOOSA is comparable to some existing population-based algorithms in solving some multi-objective test functions with a large number of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjecctive evolutionary algorithms: empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  2. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  3. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multiobjective optimization. In: Proc. 1st IEEE Conf. Evol. Comput., Orlando, FL, June 27-19, pp. 82–87 (1994)

    Google Scholar 

  4. Zitzler, E., Deb, K., Thiele, L.: Comparsion of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  5. Knowles, J.D., Corne, D.W.: The Pareto archived evolution strategy: A new basedline algorithm for Pareto multiobjecitve optimization. In: Proc. 1999 Congress on Evol. Comput., Washington, DC, July 6-9, pp. 98–105 (1999)

    Google Scholar 

  6. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and strength Pareto approach. IEEE trans. Evol. Comput. 3, 257–271 (1999)

    Article  Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective algorithms: NSGA-II. IEEE trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  8. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE trans. Evol. Comput. 7(2), 204–223 (2003)

    Article  Google Scholar 

  9. Shu, L.-S., Ho, S.-J., Ho, S.-Y.: OSA: Orthogonal Simulated Annealing Algorithm and Its Application to Designing Mixed H2/H∞ Optimal Controllers. IEEE Trans. Systems, Man, and Cybernetics-Part A to appear

    Google Scholar 

  10. Bagchi, T.-P.: Taguchi Methods T.-P. Bagchi, Taguchi Methods Explained: Practical Steps to Robust Design. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  11. Phadke, M.-S.: Quality Engineering Using Robust Design. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  12. Leung, Y.-W., Wang, Y.: An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Trans. Evol. Comput. 5, 41–53 (2001)

    Article  Google Scholar 

  13. J Schaffer, D.: Multi-objective optimization with vector evaluated genetic algorithms. In: Grefenstette, J.J. (ed.) Proc. 1st Int. Conference Genetic Algorithms, pp. 93–100. Lawrence Erlbaum, Hillsdale (1985)

    Google Scholar 

  14. Hajela, P., Lin, C.-Y.: Genetic search strategies in multicriterion optimal design. Structural Optimization (4), 99–107 (1992)

    Google Scholar 

  15. Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. SMC-Part C: Applications and Reviews 28(3), 392–403 (1998)

    Google Scholar 

  16. Osyczka, A., Kundu, S.: A modified distance method for multicriteria optimization, using genetic algorithms. Computers and Industrial Engineering 30(4), 871–882 (1996)

    Article  Google Scholar 

  17. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading (1989)

    MATH  Google Scholar 

  18. Deb, K.: Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol. Comput. 7(3), 205–230 (1999)

    Article  Google Scholar 

  19. Coello, C.A.C.: A comprehensive survey of evolutionary-based multiobjective optimization techniqures. International Journal of Knowledge and Information System 1(3), 269–308 (1999)

    Google Scholar 

  20. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  21. Szu, H., Hartley, R.: Fast simulated annealing. Physics Letters 122, 157–162 (1987)

    Article  Google Scholar 

  22. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Forrest, S. (ed.) Proc. fifth Int. Conference Genetic Algorithms, pp. 416–423. Morgan-Kaufmann, San Mateo (1993)

    Google Scholar 

  23. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich (2001)

    Google Scholar 

  24. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shu, LS., Ho, SJ., Ho, SY., Chen, JH., Hung, MH. (2004). A Novel Multi-objective Orthogonal Simulated Annealing Algorithm for Solving Multi-objective Optimization Problems with a Large Number of Parameters. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24854-5_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24854-5_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22344-3

  • Online ISBN: 978-3-540-24854-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics