Skip to main content

Efficient Edge-Swapping Heuristics for Finding Minimum Fundamental Cycle Bases

  • Conference paper
Experimental and Efficient Algorithms (WEA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3059))

Included in the following conference series:

Abstract

The problem of finding a fundamental cycle basis with minimum total cost in a graph is NP-hard. Since fundamental cycle bases correspond to spanning trees, we propose new heuristics (local search and metaheuristics) in which edge swaps are iteratively applied to a current spanning tree. Structural properties that make the heuristics efficient are established. We also present a mixed integer programming formulation of the problem whose linear relaxation yields tighter lower bounds than known formulations. Computational results obtained with our algorithms are compared with those from existing constructive heuristics on several types of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sysło, M.: On some problems related to fundamental cycle sets of a graph. In: Chartrand, R. (ed.) Theory of Applications of Graphs, pp. 577–588. Wiley, Chichester (1981)

    Google Scholar 

  2. Kirchhoff, G.: Über die auflösung der gleichungen, auf welche man bei der untersuchungen der linearen verteilung galvanisher ströme geführt wird. Poggendorf Annalen Physik 72, 497–508 (1847)

    Article  Google Scholar 

  3. Sysło, M.: On cycle bases of a graph. Networks 9, 123–132 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  4. Sysło, M.: On the fundamental cycle set graph. IEEE Transactions on Circuits and Systems 29, 136–138 (1982)

    Article  MATH  Google Scholar 

  5. Horton, J.: A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM Journal of Computing 16, 358–366 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Amaldi, E., Rizzi, R.: Personal communication (2003)

    Google Scholar 

  7. Deo, N., Prabhu, G., Krishnamoorthy, M.: Algorithms for generating fundamental cycles in a graph. ACM Transactions on Mathematical Software 8, 26–42 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Galbiati, G., Amaldi, E.: On the approximability of the minimum fundamental cycle basis problem. In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 151–164. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Brambilla, A., Premoli, A.: Rigorous event-driven (RED) analysis of large-scale nonlinear RC circuits. IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications 48, 938–946 (2001)

    Article  Google Scholar 

  10. Liebchen, C., Möhring, R.H.: A case study in periodic timetabling. In: Wagner, D. (ed.) Electronic Notes in Theoretical Computer Science, vol. 66, Elsevier, Amsterdam (2002)

    Google Scholar 

  11. Deo, N., Kumar, N., Parsons, J.: Minimum-length fundamental-cycle set problem: New heuristics and an empirical investigation. Congressus Numerantium 107, 141–154 (1995)

    MATH  MathSciNet  Google Scholar 

  12. Paton, K.: An algorithm for finding a fundamental set of cycles of a graph. Communications of the ACM 12, 514–518 (1969)

    Article  MATH  Google Scholar 

  13. Shioura, A., Tamura, A., Uno, T.: An optimal algorithm for scanning all spanning trees of undirected graphs. SIAM Journal of Computing 26, 678–692 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hansen, P., Mladenović, N.: Variable neighbourhood search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, Kluwer, Dordrecht (2003)

    Google Scholar 

  15. Hertz, A., Taillard, E., de Werra, D.: Tabu search. In: Aarts, E., Lenstra, J. (eds.) Local Search in Combinatorial Optimization, pp. 121–136. Wiley, Chichester (1997)

    Google Scholar 

  16. Liberti, L., Amaldi, E., Maculan, N., Maffioli, F.: Mathematical models and a constructive heuristic for finding minimum fundamental cycle bases. Submitted to Yugoslav Journal of Operations Research (2003)

    Google Scholar 

  17. Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems. SIAM Journal of Discrete Mathematics 2, 550–581 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amaldi, E., Liberti, L., Maculan, N., Maffioli, F. (2004). Efficient Edge-Swapping Heuristics for Finding Minimum Fundamental Cycle Bases. In: Ribeiro, C.C., Martins, S.L. (eds) Experimental and Efficient Algorithms. WEA 2004. Lecture Notes in Computer Science, vol 3059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24838-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24838-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22067-1

  • Online ISBN: 978-3-540-24838-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics