Skip to main content

A Koala-Based Approach for Modelling and Deploying Configurable Software Product Families

  • Conference paper
Software Product-Family Engineering (PFE 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3014))

Included in the following conference series:

Abstract

An approach for modelling configurable software product families (CSPFs) and for automated configuring of product individuals using the models is presented. It is based on a similar approach for configuring physical products. The conceptual foundation and syntax of the Koalish modelling language used for this purpose are defined. The language extends Koala, a component model and architecture description language, with explicit variation modelling mechanisms. Koalish is further provided a formal semantics by defining a translation from it to Weight Constraint Rule Language (WCRL), a form of logic programs. This allows using an existing inference tool for WCRL, smodels, to implement the reasoning needed in the configurator. The configurator is able to construct all valid product individuals, with respect to a Koalish model of a CSPF, that satisfy a given set of requirements. The implemented functionality of the configurator has been tested using small-scale toy examples, for which it performs adequately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clements, P.C., Northrop, L.: Software Product Lines - Practices and Patterns. Addison-Wesley, Boston (2001)

    Google Scholar 

  2. Bosch, J.: Design and Use of Software Architectures: Adapting and Evolving a Product-Line Approach. Addison-Wesley, Boston (2000)

    Google Scholar 

  3. Bosch, J.: Maturity and Evolution in Software Product Families: Approaches, Artefacts and Organization. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 257–271. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Faltings, B., Freuder, E.C.: Special Issue on Configuration. IEEE Intelligent Systems 14(4), 29–85 (1998)

    Google Scholar 

  5. Darr, T., Klein, M., McGuinness, D.L.: Special Issue on Configuration Design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 12(4), 293–397 (1998)

    Article  Google Scholar 

  6. Lakemeyer, G., Nebel, B.: Foundations of Knowledge Representation and Reasoning - A Guide to This Volume. In: Lakemeyer, G., Nebel, B. (eds.) ECAI-WS 1992. LNCS, vol. 810, pp. 1–12. Springer, Heidelberg (1994)

    Google Scholar 

  7. Asikainen, T., Soininen, T., Männistö, T.: A Koala-Based Ontology for Configurable Software Product Families. In: Configuration Workshop of 18th International Conference on Artificial Intelligence (IJCAI) (2003)

    Google Scholar 

  8. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala Component Model for Consumer Electronics Software. IEEE Computer 33(3), 78–85 (2000)

    Google Scholar 

  9. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Semantics. Artificial Intelligence 138(1-2), 181–234 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R.: Representing Configuration Knowledge with Weight Constraint Rules. In: Proceedings of the AAAI Spring 2001 Symposium on Answer Set Programming: Towards Efficient and Scalable Knowledge Representation and Reasoning (2001)

    Google Scholar 

  11. Tiihonen, J., Soininen, T., Niemelä, I., Sulonen, R.: A Practical Tool for Mass-Customising Configurable Products. In: Proceedings of the International Conference on Engineering Design (ICED 2003), Stockholm, Sweden (2003)

    Google Scholar 

  12. Soininen, T., Stumptner, M.: Introduction to Special Issue on Configuration. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 17(1-2), 1–2 (2003)

    Google Scholar 

  13. Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner, H., Stumptner, M.: Configuring Large Systems Using Generative Constraint Satisfaction. IEEE Intelligent Systems 13(4), 59–68 (1998)

    Article  Google Scholar 

  14. McGuinness, D.L., Wright, J.R.: An Industrial-Strength Description Logic-Based Configurator Platform. IEEE Intelligent Systems 14(4), 69–77 (1998)

    Google Scholar 

  15. Haag, A.: Sales Configuration in Business Processes. IEEE Intelligent Systems 13(4), 78–85 (1998)

    Article  MathSciNet  Google Scholar 

  16. Yu, B., Skovgaard, J.: A Configuration Tool to Increase Product Competitiveness. IEEE Intelligent Systems 13(4), 34–41 (1998)

    Article  Google Scholar 

  17. van Ommering, R.: Building Product Populations with Software Components. In: Proceedings of the 24th International Conference on Software Engineering (ICSE 2002), pp. 255–265 (2002)

    Google Scholar 

  18. Soininen, T., Tiihonen, J., Männistö, T., Sulonen, R.: Towards a General Ontology of Configuration. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 12(4), 357–372 (1998)

    Article  Google Scholar 

  19. Tiihonen, J., Soininen, T., Niemelä, I., Sulonen, R.: Empirical Testing of a Weight Constraint Rule Based Configurator. In: Configuration workshop of the 15th European Conference on Artificial Intelligence (ECAI 2002), Lyon, France, pp. 17–22 (2002)

    Google Scholar 

  20. Kojo, T., Männistö, T., Soininen, T.: Towards Intelligent Support for Managing Evolution of Configurable Software Product Families. In: Westfechtel, B., van der Hoek, A. (eds.) SCM 2001 and SCM 2003. LNCS, vol. 2649, pp. 86–101. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Tiihonen, J., Soininen, T., Niemelä, I., Sulonen, R.: A Practical Tool for Mass-Customising Configurable Products. In: Proceedings of the International Conference on Engineering Design (ICED 2003), Stockholm, Sweden (2003)

    Google Scholar 

  22. Medvidovic, N., Taylor, R.M.: A Classification and Comparison Framework for Software Architecture Description Languages. IEEE Transactions on Software Engineering 26(1), 70–93 (2000)

    Article  Google Scholar 

  23. Felfernig, A., Friedrich, G., Jannach, D.: Conceptual Modeling for Configuration of Mass-Customizable Products. Artificial Intelligence in Engineering 15(2), 165–176 (2001)

    Article  Google Scholar 

  24. Geyer, L., Becker, M.: On the Influence of Variabilities on the Application-Engineering Process of a Product Family. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 1–14. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Hotz, L., Krebs, T.: Supporting the Product Derivation Process with a Knowledge-Based Approach. In: Software Variability Management Workshop of ICSE 2003 (2003)

    Google Scholar 

  26. Hein, A., MacGregor, J.: Managing Variability with Configuration Techniques. In: Software Variability Management Workshop of ICSE 2003 (2003)

    Google Scholar 

  27. Czarnecki, K., Eisenecker, U.W.: Generative Programming. Addison-Wesley, Boston (2000)

    Google Scholar 

  28. Kang, K., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, S.A.: Feature-Oriented Domain Analysis (FODA) - Feasibility Study. CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon University (1990)

    Google Scholar 

  29. Thiel, S., Hein, A.: Modeling and Using Product Line Variability in Automotive Systems. IEEE Software 19(4), 66–72 (2002)

    Article  Google Scholar 

  30. van Gurp, J., Bosch, J., Svahnberg, M.: On the Notion of Variability in Software Product Lines. In: Proceedings of the Working IEEE/IFIP Conference on Software Architecture (WICSA 2001), pp. 45–54 (2001)

    Google Scholar 

  31. Kang, K., Lee, J., Donohoe, P.: Feature-oriented Product Line Engineering. IEEE Software 19(4), 58–65 (2002)

    Article  Google Scholar 

  32. Garlan, D., Monroe, R.T., Wile, D.: Acme: An Architecture Description Interchange Language. In: Proceedings of CASCON 1997 (1997)

    Google Scholar 

  33. van der Hoek, A., Heimbigner, D., Wolf, A.L.: Capturing Architectural Configurability: Variants, Options, and Evolution. Technical report CU-CS-895-99, University of Colorado (1999)

    Google Scholar 

  34. Schmid, K., John, I.: A Practical Approach to Full-Life Cycle Variability Management. In: Workshop on Software Variability Management (SVM) of 25th International Conference on Software Engineering, pp. 41–46 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asikainen, T., Soininen, T., Männistö, T. (2004). A Koala-Based Approach for Modelling and Deploying Configurable Software Product Families. In: van der Linden, F.J. (eds) Software Product-Family Engineering. PFE 2003. Lecture Notes in Computer Science, vol 3014. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24667-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24667-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21941-5

  • Online ISBN: 978-3-540-24667-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics