Skip to main content

A Constraint-Based Approach to Structure Prediction for Simplified Protein Models That Outperforms Other Existing Methods

  • Conference paper
Logic Programming (ICLP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2916))

Included in the following conference series:

Abstract

Lattice Protein Models are used for hierarchical approaches to protein structure prediction, as well as for investigating general principles of protein folding. So far, one has the problem that either the lattice does not model real protein conformations with good quality, or there is no efficient method known for finding native conformations.

We present a constraint-based method that largely improves this situation. It outperforms all existing approaches in lattice protein folding on the type of model we have chosen (namely the HP-Model by Lau and Dill [34], which models the important aspect of hydrophobicity). It is the only exact method that has been applied to two different lattices. Furthermore, It is the only exact method for the face-centered cubic lattice. This lattice is important since it has been shown [38] that the FCC lattice can model real protein conformations with coordinate root mean square deviation below 2 Å.

Our method uses a constraint-based approach. It works by first calculating maximally compact sets of points (hydrophobic cores), and then threading the given HP-sequence to the hydrophobic cores such that the core is occupied by H-monomers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abkevich, V.I., Gutin, A.M., Shakhnovich, E.I.: Impact of local and nonlocal interactions on thermodynamics and kinetics of protein folding. Journal of Molecular Biology 252, 460–471 (1995)

    Article  Google Scholar 

  2. Abkevich, V.I., Gutin, A.M., Shakhnovich, E.I.: Computer simulations of prebi-otic evolution. In: Altman, R.B., Dunker, A.K., Hunter, L., Klein, T.E. (eds.) PSB 1997, vol. 1997, pp. 27–38 (1997)

    Google Scholar 

  3. Agarwala, R., Batzoglou, S., Dancik, V., Decatur, S.E., Hannenhalli, S., Farach, M., Muthukrishnan, S., Skiena, S.: Local rules for protein folding on a triangular lattice and generalized hydrophobicity in the hp model. Journal of Computational Biology 4(3), 275–296 (1997)

    Article  Google Scholar 

  4. Agarwala, R., Batzoglou, S., Dancik, V., Decatur, S.E., Farach, M., Hannenhalli, S., Muthukrishnan, S., Skiena, S.: Local rules for protein folding on a triangular lattice and generalized hydrophobicity in the HP-model. Journal of Computational Biology 4(2), 275–296 (1997)

    Article  Google Scholar 

  5. Backofen, R.: Using constraint programming for lattice protein folding. In: Altman, R.B., Dunker, A.K., Hunter, L., Klein, T.E. (eds.) Pacific Symposium on Biocomputing (PSB 1998), vol. 3, pp. 387–398 (1998)

    Google Scholar 

  6. Backofen, R.: Optimization Techniques for the Protein Structure Prediction Problem. Habilitationsschrift, University of Munich (1999)

    Google Scholar 

  7. Backofen, R.: An upper bound for number of contacts in the HP-model on the face-centered-cubic lattice (FCC). In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 277–292. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Backofen, R.: The protein structure prediction problem: A constraint optimisation approach using a new lower bound. Constraints 6, 223–255 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Backofen, R., Will, S.: Excluding symmetries in constraint-based search. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 73–87. Springer, Heidelberg (1999)

    Google Scholar 

  10. Backofen, R., Will, S.: Fast, constraint-based threading of HP-sequences to hydrophobic cores. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, p. 494. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Backofen, R., Will, S.: Optimally compact finite sphere packings — hydrophobic cores in the FCC. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, p. 257. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Backofen, R., Will, S.: Excluding symmetries in constraint-based search. Constraints 7(3), 333–349 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Backofen, R., Will, S., Bornberg-Bauer, E.: Application of constraint programming techniques for structure prediction of lattice proteins with extended alphabets. J. Bioinformatics 15(3), 234–242 (1999)

    Article  Google Scholar 

  14. Backofen, R., Will, S., Clote, P.: Algorithmic approach to quantifying the hydrophobic force contribution in protein folding. In: Altman, R.B., Dunker, A.K., Hunter, L., Klein, T.E. (eds.) Pacific Symposium on Biocomputing (PSB 2000), vol. 5, pp. 92–103 (2000)

    Google Scholar 

  15. Bagci, Z., Jernigan, R.L., Bahar, I.: Residue coordination in proteins conforms to the closest packing of spheres. Polymer 43, 451–459 (2002)

    Article  Google Scholar 

  16. Bagci, Z., Jernigan, R.L., Bahar, I.: Residue packing in proteins: Uniform distribution on a coarse-grained scale. J. Chem. Phys. 116, 2269–2276 (2002)

    Article  Google Scholar 

  17. Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (HP) modell is NP-complete. In: Proc. of the RECOMB 1998, pp. 30–39 (1998)

    Google Scholar 

  18. Bornberg-Bauer, E., Chan, H.S.: Modeling evolutionary landscapes: mutational stability, topology, and superfunnels in sequence space. Proc. Natl. Acad. Sci. USA 96(19), 10689–10694 (1999)

    Article  Google Scholar 

  19. Bornberg-Bauer, E.: Chain growth algorithms for HP-type lattice proteins. In: Proc. of the 1st Annual International Conference on Computational Molecular Biology (RECOMB), pp. 47–55. ACM Press, New York (1997)

    Google Scholar 

  20. Cipra, B.: Packing challenge mastered at last. Science 281, 1267 (1998)

    Article  Google Scholar 

  21. Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., Yannakakis, M.: On the complexity of protein folding. In: Proc. of STOC (1998) (to appear), Short version in Proc. of RECOMB 1998, pp. 61–62

    Google Scholar 

  22. Cui, Y., Wong, W.H., Bornberg-Bauer, E., Chan, H.S.: Recom-binatoric exploration of novel folded structures: a heteropolymer-based model of protein evolutionary landscapes. Proc. Natl. Acad. Sci. USA 99(2), 809–814 (2002)

    Article  Google Scholar 

  23. Dill, K.A., Bromberg, S., Yue, K., Fiebig, K.M., Yee, D.P., Thomas, P.D., Chan, H.S.: Principles of protein folding - a perspective of simple exact models. Protein Science 4, 561–602 (1995)

    Article  Google Scholar 

  24. Dill, K.A., Fiebig, K.M., Chan, H.S.: Cooperativity in protein-folding kinetics. Proc. Natl. Acad. Sci. USA 90, 1942–1946 (1993)

    Article  Google Scholar 

  25. Dinner, A.R., Sali, A., Karplus, M.: The folding mechanism of larger model proteins: role of native structure. Proc. Natl. Acad. Sci. USA 93(16), 8356–8361 (1996)

    Article  Google Scholar 

  26. Dovier, A., Burato, M., Fogolari, F.: Using secondary structure information for protein folding in clp(fd). In: Proc. of Workshop on Functional and Constraint Logic Programming. ENTCS, vol. 76 (2002)

    Google Scholar 

  27. Freuder, E.C.: A sufficient condition for backtrack-free search. Journal of the ACM 29, 24–32 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  28. Govindarajan, S., Goldstein, R.A.: The foldability landscape of model proteins. Biopolymers 42(4), 427–438 (1997)

    Article  Google Scholar 

  29. Hart, W.E., Istrail, S.: Lattice and off-lattice side chain models of protein folding: linear time structure prediction better than 86. Journal of Computational Biology 4(3), 241–259 (1997)

    Article  Google Scholar 

  30. Hart, W.E., Istrail, S.C.: Fast protein folding in the hydrophobic-hydrophilic model within three-eighths of optimal. Journal of Computational Biology 3(1), 53–96 (1996)

    Article  Google Scholar 

  31. Hinds, D.A., Levitt, M.: From structure to sequence and back again. Journal of Molecular Biology 258, 201–209 (1996)

    Article  Google Scholar 

  32. Kaya, H., Chan, H.S.: Energetic components of cooperative protein folding. Physical Review Letters 85(22), 4823–4826 (2000)

    Article  Google Scholar 

  33. Koehl, P., Levitt, M.: A brighter future for protein structure prediction. Nature Structural Biology 6, 108–111 (1999)

    Article  Google Scholar 

  34. Lau, K.F., Dill, K.A.: A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22, 3986–3997 (1989)

    Article  Google Scholar 

  35. MacDonald, D., Joseph, S., Hunter, D.L., Moseley, L.L., Jan, N., Guttmann, A.J.: Self-avoiding walks on the simple cubic lattice. J. Phys. A: Math. Gen. 33, 5973–5983 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  36. Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhauser, Boston, 425 pages (1993)

    Google Scholar 

  37. Ortiz, A.R., Kolinski, A., Skolnick, J.: Combined multiple sequence reduced protein model approach to predict the tertiary structure of small proteins. In: Altman, R.B., Dunker, A.K., Hunter, L., Klein, T.E. (eds.) PSB 1998, vol. 3, pp. 375–386 (1998)

    Google Scholar 

  38. Park, B.H., Levitt, M.: The complexity and accuracy of discrete state models of protein structure. Journal of Molecular Biology 249, 493–507 (1995)

    Article  Google Scholar 

  39. Shakhnovich, E.I., Gutin, A.M.: Enumeration of all compact conformations of copolymers with random sequence of links. Journal Chemical Physics 8, 5967–5971 (1990)

    Article  Google Scholar 

  40. Sloane, N.J.A.: Kepler’s conjecture confirmed. Nature 395(6701), 435–436 (1998)

    Article  Google Scholar 

  41. Smolka, G.: The Oz programming model. In: van Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 324–343. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  42. Unger, R., Moult, J.: Local interactions dominate folding in a simple protein model. Journal of Molecular Biology 259, 988–994 (1996)

    Article  Google Scholar 

  43. Šali, A., Shakhnovich, E., Karplus, M.: Kinetics of protein folding. Journal of Molecular Biology 235, 1614–1636 (1994)

    Article  Google Scholar 

  44. Šali, A., Shakhnovich, E., Karplus, M.: Kinetics of protein folding. Journal of Molecular Biology 235, 1614–1636 (1994)

    Article  Google Scholar 

  45. Will, S.: Constraint-based hydrophobic core construction for protein structure prediction in the face-centered-cubic lattice. In: Altman, R.B., Dunker, A.K., Hunter, L., Klein, T.E. (eds.) Proceedings of the Pacific Symposium on Biocomputing 2002 (PSB 2002), World Scientific Publishing Co. Pte. Ltd., Singapore (2002)

    Google Scholar 

  46. Xia, Y., Huang, E.S., Levitt, M., Samudrala, R.: Ab initio construction of protein tertiary structures using a hierarchical approach. Journal of Molecular Biology 300, 171–185 (2000)

    Article  Google Scholar 

  47. Yue, K., Fiebig, K.M., Thomas, P.D., Chan, H.S., Sha khnovich, E.I., Dill, K.A.: A test of lattice protein folding algorithms. Proc. Natl. Acad. Sci. USA 92(l), 325–329 (1995)

    Article  Google Scholar 

  48. Yue, K., Dill, K.A.: Sequence-structure relationships in proteins and copolymers. Physical Review E 48(3), 2267–2278 (1993)

    Article  Google Scholar 

  49. Yue, K., Dill, K.A.: Forces of tertiary structural organization in globular proteins. Proc. Natl. Acad. Sci. USA 92, 146–150 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Backofen, R., Will, S. (2003). A Constraint-Based Approach to Structure Prediction for Simplified Protein Models That Outperforms Other Existing Methods. In: Palamidessi, C. (eds) Logic Programming. ICLP 2003. Lecture Notes in Computer Science, vol 2916. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24599-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24599-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20642-2

  • Online ISBN: 978-3-540-24599-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics