Skip to main content

Tensor Product Spline Interpolation subject to Piecewise Bilinear Lower and Upper Bounds

  • Chapter
Advanced Course on FAIRSHAPE

Abstract

This paper is concerned with range restricted interpolation of gridded data by biquadratic and biquartic tensor product splines on refined rectangular grids. In particular, the given lower and upper bounds are assumed to be continuous and piecewise bilinear with respect to the original grid. Sufficient conditions for the fulfillment of the range restrictions are derived utilizing the tensor product structure as well as corresponding results for univariate quadratic and quartic splines with additional knots. The solvability of this system of sufficient conditions, hence the existence of interpolants meeting the constraints, can always be achieved for strictly compatible data by constructing the refined grid appropriately. The selection of a visually improved range restricted interpolant is based on a fit-and-modify approach or on the minimization of a bivariate Holladay functional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andersson, L.-E., Elfving, T.: Best constrained approximation in Hilbert space and interpolation by cubic splines subject to obstacles. SIAM Journal on Scientific Computing 16 (1995), 1209–1232.

    Article  MathSciNet  MATH  Google Scholar 

  2. Asaturyan, S., Unsworth, K.: A Cl monotonicity preserving surface interpolation scheme. In D. C. Handscomb (ed.): Mathematics of Surfaces III, Oxford University Press, Oxford (1989), 243–266.

    Google Scholar 

  3. de Boor, C.: A Practical Guide to Splines. Springer 1978.

    Google Scholar 

  4. Dontchev, A.L.: Best interpolation in a strip. Journal of Approximation Theory 73 (1993), 334–342.

    Article  MathSciNet  MATH  Google Scholar 

  5. Ewald, S., Mulansky, B., Mühlig, H.: Bivariate interpolating and smoothing tensor product splines. In J. W. Schmidt and H. Späth (eds.): Splines in Numerical Analysis, Akademie-Verlag, Berlin (1989), 55–68.

    Google Scholar 

  6. Fontanella, F.: Shape preserving interpolation. In W. Dahmen, M. Gasca, and C. A. Micchelli (eds.): Computation of Curves and Surfaces, Kluwer Academic Publ. (1990), 183–214.

    Google Scholar 

  7. Herrmann, M., Mulansky, B., Schmidt, J. W.: Scattered data interpolation subject to piecewise quadratic range restrictions. Journal of Computational and Applied Mathematics (to appear).

    Google Scholar 

  8. Mulansky, B., Neamtu, M.: Interpolation and approximation from convex sets. Preprint MATH-NM-02–1996, TU Dresden 1996.

    Google Scholar 

  9. Mulansky, B., Schmidt, J. W.: Nonnegative interpolation by biquadratic splines on refined rectangular grids. In P.-J. Laurent, A. Le Méhauté, and L. L. Schumaker (eds.): Wavelets, Images and Surface Fitting, A K Peters, Wellesley (1994), 379–386.

    Google Scholar 

  10. Mulansky, B., Schmidt, J. W.: Powell-Sabin splines in range restricted interpolation of scattered data. Computing 53 (1994), 137–154.

    Article  MathSciNet  MATH  Google Scholar 

  11. Mulansky, B., Schmidt, J. W.: Constructive methods in convex C2 interpolation using quartic splines. Numerical Algorithms 12 (1996), 111–124.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ong, B. H., Unsworth, K.: On non-parametric constrained interpolation. In T. Lyche and L. L. Schumaker (eds.): Mathematical Methods in Computer Aided Geometric Design II, Academic Press (1992), 419–430.

    Google Scholar 

  13. Schmidt, J. W.: Positive, monotone, and S-convex C l -interpolation on rectangular grids. Computing 48 (1992), 363–371.

    Article  MathSciNet  MATH  Google Scholar 

  14. Schmidt, J. W.: Strip interpolation using splines on refined grids. Preprint MATH-NM05–1996, TU Dresden 1996.

    Google Scholar 

  15. Schmidt, J. W., Heß, W.: Spline interpolation under two-sided restrictions on the derivatives. Zeitschrift für Angewandte Mathematik und Mechanik 69 (1989), 353–365.

    Article  MATH  Google Scholar 

  16. Schumaker, L. L.: On shape preserving quadratic spline interpolation. SIAM Journal on Numerical Analysis 20 (1983), 854–864.

    Article  MathSciNet  MATH  Google Scholar 

  17. Utreras, F. I.: Positive thin plate splines. Approximation Theory and its Applications 1 (1985), 77–108.

    MathSciNet  MATH  Google Scholar 

  18. Walther, M.: Restringierte Interpolation mit bivariaten Splines. Diplomarbeit, TU Dresden 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Mulansky, B., Schmidt, J.W., Walther, M. (1996). Tensor Product Spline Interpolation subject to Piecewise Bilinear Lower and Upper Bounds. In: Hoschek, J., Kaklis, P.D. (eds) Advanced Course on FAIRSHAPE. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-82969-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-82969-6_16

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-02634-1

  • Online ISBN: 978-3-322-82969-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics