Skip to main content

Laser Micromachining of Engineering Materials—A Review

  • Chapter
  • First Online:
Micro and Nano Machining of Engineering Materials

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

Miniaturization has led to an increase in the use of micromachining processes. The need for the material processing at microatomic resolution at an economical cost has underpinned this technology in many industries. Laser micromachining is a precise noncontact type of machining process which is used in the fabrication of micro-components ranging up to 500 µm. Laser ablation distinctively focuses on the small elemental areas which helps to absorb a high percentage of energy. This chapter represents an overview of various researches carried out in laser machining fields, its applicability and the advancements made. It also shows the implementation of ultrashort and femtosecond pulsed laser micromachining. Laser micromachining has lot of advantages over conventional contact machining processes as for instance the machining of any workpiece material can be easily accomplished within predefined time. Femtosecond laser machining can machine even transparent materials like glass, sapphire. The analysis of various theoretical and experimental research is used to describe the performance of laser beam micromachining (LBMM) on some of the advanced engineering materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 2nd edn (Wiley, 2007). https://doi.org/10.1002/9783527635245.ch2

    Chapter  Google Scholar 

  2. S.C. Singh, H. Zeng, C. Guo, W. Cai, Lasers: fundamentals, types, and operations, in Nanomaterials: Processing and Characterization with Lasers (2012), pp. 1–34. https://doi.org/10.1002/9783527646821.ch1

    Chapter  Google Scholar 

  3. A.P. Kumar, Laser micromachining: technology and applications. Int. J. Eng. Res. Appl. (IJERA), ISSN: 2248-9622 National Conference on Advances in Engineering and Technology. (AET-29th March 2014)

    Google Scholar 

  4. Q. Bian, S. Chen, B.T. Kim, N. Leventis, H. Lu, Z. Chang, S. Lei, Micromachining of polyurea aerogel using femtosecond laser pulses. J. Non-Crystal. Solids 357(1), 186–193 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.09.037

    Article  CAS  Google Scholar 

  5. U. Klotzbach, A.F. Lasagni, M. Panzner, V. Franke, Laser Micromachining, in Fabrication and Characterizationin the Micro-Nano Range, Advanced Structured Materials, ed. by F.A. Lasagni, A.F. Lasagni, vol. 10 (2011). https://doi.org/10.1007/978-3-642-17782-8_2

    Chapter  Google Scholar 

  6. U. Klotzbach, A.F. Lasagni, M. Panzner, V. Franke, Laser Micromach. Spr. 10, 29–119 (2011). https://doi.org/10.1007/978-3-642-17782-8

    Article  Google Scholar 

  7. H. KnowlesR, Karnakis G. RutterfordM, A.D. Ferguson, Micromachining of metals, ceramics and polymers using nanosecond lasers. Int. J. Adv. Manuf. Technol. 33, 95–102 (2007). https://doi.org/10.1007/s00170-007-0967-2

    Article  Google Scholar 

  8. T. Brettschneider, C. Dorrer, D. Czurratis, R. Zengerle, M. Daub, Laser micromachining as a metallization tool for micro fluidic polymer stacks. J. Micromech. Micro Eng. 23(3) (2013). https://doi.org/10.1088/0960-1317/23/3/035020

    Article  Google Scholar 

  9. R.P. Patel, D.M. Patel, Grey relational analysis based optimization of laser cutting process parameters for aluminum alloy—a review. Int. J. Eng. Res. Technol. (IJERT) 3(3) (2014). ISSN: 2278-0181

    Google Scholar 

  10. M.R.M. Rejab, T.T. Mon, M.F.F. Rashid, N.S.M. Shalahim, M.F. Ismail, Virtual laser-micromachining of MEMS components. Int. J. Recent Trend. Eng. 1(5) (2009)

    Google Scholar 

  11. A. Parashar, J.S. Mann, A. Shah, N.R. Sivakumar, Numerical and experimental study of interference based micromachining of stainless steel. JLMN-J. Laser Micro/ Nano-eng. 4(2) (2009)

    Google Scholar 

  12. M. Manjaiah, S. Narendranath, S. Basavarajappa, Review on non-conventional machining of shape memory alloys. Trans. Nonferrous Metals Soc. China (English Edition) 24(1), 12–21 (2014). https://doi.org/10.1016/S1003-6326(14)63022-3

    Article  CAS  Google Scholar 

  13. Y. Long, Q. Liu, Z. Zhong, L. Xiong, T. Shi, Experimental study on the processes of laser-enhanced electrochemical micromachining stainless steel. Optik 126(19), 1826–1829 (2015). https://doi.org/10.1016/j.ijleo.2015.05.019

    Article  CAS  Google Scholar 

  14. S.N. Akhtar, S.A. Ramakrishna, J. Ramkumarv, Excimer laser micromachining for miniaturized hybrid microwave integrated circuits. Directions 15(1) (2015)

    Google Scholar 

  15. A. Sen, B. Doloi, B. Bhattacharyya, Experimental studies on fibre laser micro-machining of Ti-6al-4v, in 5th International & 26th All India Manufacturing Technology, Design and Research conference (AIMTDR 2014), 14 Dec 2014

    Google Scholar 

  16. N.S.M. Shalahim, T.T. Mon, M.F. Ismail, M.F.F. Rashid, M.R.M. Rejab, Finite Element Simulation of Laser-Micromachining”. Proceedings of the International Multi Conference of Engineers and Computer Scientists, IMECS 2010, vol. 3 (Hong Kong, 17–19 March 2010)

    Google Scholar 

  17. C.K. Walker, G. Narayanan, H. Knoepfle, J. Capara, J. Glenn, A. Hungerford, T.M. Bloomstein, S.T. Palmacci, M.B. Stern, J.E. Curtin, Laser micromachining of silicon: a new technique for fabricating high quality terahertz waveguide components, in Proceedings of 8th international symposium on space terahertz technology (Harvard University, 1997), p. 358

    Google Scholar 

  18. L. Slatineanu, M. Coteaţă, O. Dodun, A. Iosub, L. Apetrei, Impact phenomena in the case of some non-traditional machining processes, in Project No. ID 625 National Council of Scientific Research in Higher Education (Romania) (2008)

    Article  Google Scholar 

  19. S. Mishra, V. Yadava, Laser beam micromachining (LBMM)—a review. Opt. Lasers Eng. (2015). https://doi.org/10.1016/j.optlaseng.2015.03.017

    Article  Google Scholar 

  20. M.C. Gower, Industrial applications of laser micromachining. Opt. Exp. 7(2), 56–67 (2000). https://doi.org/10.1364/OE.7.000056

    Article  CAS  Google Scholar 

  21. N. Bloembergen, Laser-material interactions; fundamentals and applications, in AIP Conference Proceedings, vol. 288. (1993), pp. 3–10. https://doi.org/10.1063/1.44887

  22. J.C. Miller, History, scope and the future of laser ablation, in Laser Ablation, Principles and Applications, ed. by J.C. Miller. Springer (1994)

    Google Scholar 

  23. Y. Kawamura, K. Toyoda, S. Namba, Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser. Appl. Phys. Lett. 40(5), 374–375 (1982). https://doi.org/10.1063/1.93108

    Article  CAS  Google Scholar 

  24. R. Srinivasan, V. Mayne-Banton, Self-developing photoetching of poly (ethylene terephthalate) films by far-ultraviolet excimer laser radiation. Appl. Phys. Lett. 41(6), 576–578 (1982). https://doi.org/10.1063/1.93601

    Article  CAS  Google Scholar 

  25. B. Wilhelmi, J. Herrmann, Lasers for Ultrashort Light Pulses, OSTI-Identifier:5733239 (United States, 1987)

    Google Scholar 

  26. M.S. Brown, C.B. Arnold, Fundamentals of laser-material interaction and application to multiscale surface modificatication. Springer Ser. Mat. Sci. 135(0933–033X), 91–120 (2010). https://doi.org/10.1007/978-3-642-10523-4.

    Google Scholar 

  27. J.R. Lankard, G.E. Wolbold, Laser ablation of polyimide in a manufacturing facility. Appl. Phys. A54, 355 (1992)

    Google Scholar 

  28. F.O. Olsen, L. Alting, Pulsed laser materials processing, ND-YAG versus CO2 Lasers. CIRP Ann. Manuf. Technol. 44(1), 141–145 (1995). https://doi.org/10.1016/S0007-8506(07)62293-8

    Article  Google Scholar 

  29. J. Meijer, Laser beam machining (LBM), state of the art and new opportunities. J. Mat. Process. Technol. 149, 2–17 (2004). https://doi.org/10.1016/j.jmatprotec.2004.02.003

    Article  Google Scholar 

  30. X. Liu, D. Du, G. Mourou, Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quant. Electronics, 33(10), 1706–1716 (1997). https://doi.org/10.1109/3.631270

    Article  CAS  Google Scholar 

  31. E. Ohmura, I. Fukumoto, Study on fusing and evaporating process of fcc metal due to laser irradiation using molecular dynamics. Int. J. Jpn. Soc. Precis. Eng. 30, 47–48 (1996)

    CAS  Google Scholar 

  32. F.J. McClung, R.W. Hellwarth, Giant optical pulsations from ruby. J. Appl. Phys. 33(3), 828–829 (1962). https://doi.org/10.1063/1.1777174

    Article  Google Scholar 

  33. R.S. Patel, T.F. Redmond, C. Tessler, D. Tudryn, D. Pulaski, Production benefits from excimer laser tools, in Laser Focus World (1996)

    Google Scholar 

  34. C. Rowan, Excimer lasers drill precise holes with higher yields, in Laser Focus World (1995)

    Google Scholar 

  35. M.C. Gower, Excimer lasers for surgery and biomedical fabrication, in Nanotechnology in Medicine and the Biosciences, ed. by R.R.H. Coombs, D.W. Robinson (Gordon & Breach, New York, 1996)

    Google Scholar 

  36. B. Tan, K. Venkatakrishnan, Thermal coupling in multishot laser microvia drilling for interconnection application. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 24, 211–215 (2006). https://doi.org/10.1116/1.2162573

    Article  CAS  Google Scholar 

  37. J.N. Reddy, An Introduction to the Finite Element Method (McGraw-Hill, New York, USA, 2006). ISBN 9780072466850

    Google Scholar 

  38. C.B. Arnold, A. Piqué, Laser Direct-Write Processing. MRS Bulletin 32, 15 (2007)

    Google Scholar 

  39. K. Venkatakrishnan, B. Tan, N.R. Sivakumar, Submicron machining of metallic film by low influence ultrashort”. Opt. Laser Technol. 34, 575–578 (2002)

    Article  CAS  Google Scholar 

  40. S.D. Allen, M. Bass, M.L. Teisniger, Comparison of pulsed Nd:YAG and pulsed CO2 lasers for hole drilling in printed circuit board materials, in CLEO Conference Summary (1982)

    Google Scholar 

  41. F. Bachman, Excimer lasers in a fabrication line for a highly integrated printed circuit board. Chemtronics 4, 149 (1989)

    Google Scholar 

  42. P. Crosby, Get to know types of lasers, in Materials Processing Units from Coherent Inc. June 2002.

    Google Scholar 

  43. J.P. Desbiens, P. Masson, ArF excimer laser micromachining of Pyrex, SiC and PZT for rapid prototyping of MEMS components. Sens. Actuators A Phys. 136(2), 554–563 (2007). https://doi.org/10.1016/j.sna.2007.01.002

    Article  CAS  Google Scholar 

  44. W.S. Lau, W.B. Lee, S.Q. Pang, Pulsed Nd: YAG laser cutting of carbon fibre composite materials. CIRP Ann. Manuf. Technol. 39(1), 179–182 (1990). https://doi.org/10.1016/S0007-8506(07)61030-0

    Article  Google Scholar 

  45. J. Meijer, K. Du, A. Gillner, D. Hoffmann, V.S. Kovalenko, T. Masuzawa, W. Schulz, Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons. CIRP Ann. Manuf. Technol. 51(2), 531–550 (2002). https://doi.org/10.1016/S0007-8506(07)61699-0

    Article  Google Scholar 

  46. H.W. Mocker, R.J. Collins, Mode competition and self-locking effects in a q-switched ruby laser. Appl. Phys. Lett. 7(10), 270–273 (1965). https://doi.org/10.1063/1.1754253

    Article  Google Scholar 

  47. E. Ohmura, I. Fukumoto, I. Miyamoto, Molecular dynamics simulationon laser ablation and thermal shock phenomena, in Proceedings of the ICALEO (1998), pp. A45–A54

    Google Scholar 

  48. R. Paschotta, R.P. Photonics, C. Gmbh, Solid state lasers for ultrashort pulses—a diverse family, in Photonick International (2006), pp. 1–4

    Google Scholar 

  49. S. Ronald, Fundamentals of Laser Micromachining (CRC Press, A Taylor & Francis Group, USA, 2012). ISBN 9781439860557

    Google Scholar 

  50. M.N. Watson, Laser drilling of printed circuit boards, in Circuit World, (1984), pp. 11, 13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divya Zindani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faisal, N., Zindani, D., Kumar, K., Bhowmik, S. (2019). Laser Micromachining of Engineering Materials—A Review. In: Kumar, K., Zindani, D., Kumari, N., Davim, J. (eds) Micro and Nano Machining of Engineering Materials. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-319-99900-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99900-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99899-2

  • Online ISBN: 978-3-319-99900-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics