Skip to main content

Hidden Costs of Modelling Post-fire Plant Community Assembly Using Cellular Automata

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2018)

Abstract

Cellular Automata (CA) models have been applied to different fields of knowledge, from cryptography, arts, to the modelling and simulation of complex systems. In the latter area, however, sometimes the ability to properly represent complex interacting but distinct dynamics taking place within a given area is limited by the need of calibrating models in which the number of necessary parameters grows. Hidden costs related to the identification of specific values or plausible ranges for parameters can become overwhelming.

Here we model the assembly process of plant communities after fire. The number of elements of plant communities (plants of different species) and processes involved (seed dispersal, plant recruitment, competence, etc.) require a high degree of parameterization because all those processes have great relevance on the evolution of the system, for instance during post-fire recovery.

The fire, aside negative effects, releases a number of resources (space, nutrients, ...) making them easily available for plants, which promptly use those resources so they are no longer available to other plants after a period of time which usually ranges from months to years. In the meantime, the plasticity of species in relation to fire and environment and the interactions among species determine the direction of changes to occur.

In this work we present a novel approach to the assembly of plant communities after fire using CA. In particular we gather the preliminary results of their application and give a feasible way to optimize the parameterization of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandridis, A., Vakalis, D., Siettos, C.I., Bafas, G.V.: A cellular automata model for forest fire spread prediction: the case of the wildfire that swept through spetses island in 1990. Appl. Math. Comput. 204(1), 191–201 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Allen, K.A., Harris, M.P., Marrs, R.H.: Matrix modelling of prescribed burning in calluna vulgaris-dominated moorland: short burning rotations minimize carbon loss at increased wildfire frequencies. J. Appl. Ecol. 50(3), 614–624 (2013)

    Article  Google Scholar 

  3. Altartouri, A., Nurminen, L., Jolma, A.: Spatial neighborhood effect and scale issues in the calibration and validation of a dynamic model of phragmites australis distribution-a cellular automata and machine learning approach. Environ. Model. Softw. 71, 15–29 (2015)

    Article  Google Scholar 

  4. Alvarez, R., Munoz, A., Pesqueira, X., Garcia-Duro, J., Reyes, O., Casal, M.: Spatial and temporal patterns in structure and diversity of mediterranean forest of quercus pyrenaica in relation to fire. For. Ecol. Manag. 257(7), 1596–1602 (2009)

    Article  Google Scholar 

  5. Anderson, T., Dragicevic, S.: A geosimulation approach for data scarce environments: modeling dynamics of forest insect infestation across different landscapes. ISPRS Int. J. Geo-Inf. 5(2), 9 (2016)

    Article  Google Scholar 

  6. Baetens, J.M., De Baets, B.: A Spatial sensitivity analysis of a spatially explicit model for myxomatosis in Belgium. In: El Yacoubi, S., Wąs, J., Bandini, S. (eds.) ACRI 2016. LNCS, vol. 9863, pp. 91–100. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44365-2_9

    Chapter  Google Scholar 

  7. Baltzer, H., Braun, P., Köhler, W.: Modeling population dynamics with cellular automata. United States Department of Agriculture Forest Service, General Technical report RM, pp. 703–712 (1996)

    Google Scholar 

  8. Bandini, S., Manzoni, S., Redaelli, S., Vanneschi, L.: Automatic detection of go–based patterns in CA model of vegetable populations: experiments on Geta pattern recognition. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 427–435. Springer, Heidelberg (2006). https://doi.org/10.1007/11861201_50

    Chapter  Google Scholar 

  9. Bandini, S., Pavesi, G.: Simulation of vegetable populations dynamics based on cellular automata. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 202–209. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45830-1_19

    Chapter  MATH  Google Scholar 

  10. Bandini, S., Pavesi, G.: A model based on cellular automata for the simulation of the dynamics of plant populations. In: International Congress on Environmental Modelling and Software, vol. 160 (2004)

    Google Scholar 

  11. Beck, J., Holloway, J.D., Schwanghart, W.: Undersampling and the measurement of beta diversity. Methods Ecol. Evol. 4(4), 370–382 (2013)

    Article  Google Scholar 

  12. Bellingham, P.J., Sparrow, A.D.: Resprouting as a life history strategy in woody plant communities. Oikos 89(2), 409–416 (2000)

    Article  Google Scholar 

  13. Bond, W.J., Keeley, J.E.: Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20(7), 387–394 (2005)

    Article  Google Scholar 

  14. Colasanti, R., Hunt, R., Watrud, L.: A simple cellular automaton model for high-level vegetation dynamics. Ecol. Model. 203(3–4), 363–374 (2007)

    Article  Google Scholar 

  15. Davies, G.M., Gray, A., Rein, G., Legg, C.J.: Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland. For. Ecol. Manag. 308, 169–177 (2013)

    Article  Google Scholar 

  16. García-Duro, J., Álvarez, R., Basanta, M., Casal, M.: Aplicación de redes bayesianas ás relacións entre especies vexetais despois de incendio forestal e a súa sensibilidade ó tamaño das unidades de mostraxe. In: BIOapps2016. Encontro Galaico-Portugués de Biometría, Con Aplicación Ás Ciencias Da Saúde, Á Ecoloxía E Ás Ciencias Do Medio AmbienteD (2016)

    Google Scholar 

  17. Hogeweg, P.: Cellular automata as a paradigm for ecological modeling. Appl. Math. Comput. 27(1), 81–100 (1988)

    MathSciNet  MATH  Google Scholar 

  18. Huntley, B., Baxter, R.: Vegetation ecology and global change. In: Vegetation Ecology, pp. 357–372 (2005)

    Google Scholar 

  19. Kowalewski, L.K., Chizinski, C.J., Powell, L.A., Pope, K.L., Pegg, M.A.: Accuracy or precision: implications of sample design and methodology on abundance estimation. Ecol. Model. 316, 185–190 (2015)

    Article  Google Scholar 

  20. Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4(2), 87–112 (1994)

    Article  Google Scholar 

  21. Lengyel, A., Csiky, J., Botta-Dukát, Z.: How do locally infrequent species influence numerical classification? A simulation study. Community Ecol. 13(1), 64–71 (2012)

    Article  Google Scholar 

  22. Mitchell, M.: An Introduction to Genetic Algorithms. MIT press, Cambridge (1998)

    MATH  Google Scholar 

  23. Muñoz, A., García-Duro, J., Álvarez, R., Pesqueira, X., Reyes, O., Casal, M.: Structure and diversity of Erica ciliaris and Erica tetralix heathlands at different successional stages after cutting. J. Env. Manag. 94(1), 34–40 (2012)

    Article  Google Scholar 

  24. Pesqueira, X.M., del Viejo, A.M., Álvarez, R., Duro, J.G., Reyes, O.: Estudio ecológico del matorral atlántico de interés para conservación. Respuesta estructural a usos tradicionales en galicia. Rev. Real Acad. Galega de Cienc. 24, 41–60 (2005)

    Google Scholar 

  25. Proença, V., Pereira, H.M., Vicente, L.: Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation. Acta Oecol. 36(6), 626–633 (2010)

    Article  Google Scholar 

  26. Reyes, O., Casal, M.: Regeneration models and plant regenerative types related to the intensity of fire in atlantic shrubland and woodland species. J. Veg. Sci. 19(4), 575–583 (2008)

    Article  Google Scholar 

  27. Reyes, O., Casal, M., Rego, F.C.: Resprouting ability of six atlantic shrub species. Folia Geobot. 44(1), 19–29 (2009)

    Article  Google Scholar 

  28. Reyes, O., García-Duro, J., Salgado, J.: Fire affects soil organic matter and the emergence of pinus radiata seedlings. Ann. For. Sci. 72(2), 267–275 (2015)

    Article  Google Scholar 

  29. Sree, P.K., Babu, I.R., et al.: Cellular automata and its applications in bioinformatics: a review. Glob. Perspect. Artif. Intell. 2, 16–22 (2014)

    Google Scholar 

  30. Stier, A.C., Bolker, B.M., Osenberg, C.W.: Using rarefaction to isolate the effects of patch size and sampling effort on beta diversity. Ecosphere 7(12) (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Mariot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García-Duro, J. et al. (2018). Hidden Costs of Modelling Post-fire Plant Community Assembly Using Cellular Automata. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds) Cellular Automata. ACRI 2018. Lecture Notes in Computer Science(), vol 11115. Springer, Cham. https://doi.org/10.1007/978-3-319-99813-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99813-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99812-1

  • Online ISBN: 978-3-319-99813-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics