Skip to main content

Drivers’ Behavior Effects in the Occurrence of Dangerous Situations Which May Lead to Accidents

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11115))

Included in the following conference series:

Abstract

This paper presents an analysis how different acceleration policies to reach the maximum speed of the road, considered as a heterogeneity unobserved in usual measurements, influence the probability of occurrence of Dangerous Situations (DS) that can lead to accidents between vehicles. For this, a modified version of the NaSch model is proposed. The probability Density Function (PDF) Beta is used to describe these distinct behaviors. The effect of these policies on the traffic dynamics was also analyzed. A new metric is presented so that we can analyze results where real deceleration rates data are used to evaluate accident probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. Journal de physique I 2(12), 2221–2229 (1992)

    Article  Google Scholar 

  2. Takayasu, M., Takayasu, H.: 1/f noise in a traffic model. In: Fractals in Natural Sciences, pp. 486–492 (1994)

    Google Scholar 

  3. Barlovic, R., Huisinga, T., Schadschneider, A., Schreckenberg, M.: Open boundaries in a cellular automaton model for traffic flow with metastable states. Phys. Rev. E 66(4), 046113 (2002)

    Article  Google Scholar 

  4. Kuang, H., Zhang, G.X., Li, X.L., Lo, S.M.: Effect of slow-to-start in the extended BML model with four-directional traffic. Phys. Lett. A 378(21), 1455–1460 (2014)

    Article  Google Scholar 

  5. Larraga, M.E., del Río, J.A., Schadschneider, A.: New kind of phase separation in a CA traffic model with anticipation. J. Phys. A: Math. General 37(12), 3769 (2004)

    Article  MathSciNet  Google Scholar 

  6. Larraga, M.E., Alvarez-Icaza, L.: Cellular automaton model for traffic flow based on safe driving policies and human reactions. Physica A: Stat. Mech. Appl. 389(23), 5425–5438 (2010)

    Article  Google Scholar 

  7. Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: Towards a realistic microscopic description of highway traffic. J. Phys. A: Math. General 33(48), L477 (2000)

    Article  MathSciNet  Google Scholar 

  8. Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: A realistic two-lane traffic model for highway traffic. J. Phys. A: Math. General 35(15), 3369 (2002)

    Article  MathSciNet  Google Scholar 

  9. Tian, J.F., Jia, N., Zhu, N., Jia, B., Yuan, Z.Z.: Brake light cellular automaton model with advanced randomization for traffic breakdown. Transp. Res. Part C: Emerg. Technol. 44, 282–298 (2014)

    Article  Google Scholar 

  10. Zamith, M., Leal-Toledo, R.C.P., Clua, E.: A novel cellular automaton model for traffic freeway simulation. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 524–533. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33350-7_54

    Chapter  Google Scholar 

  11. Zamith, M., Leal-Toledo, R.C.P., Clua, E., Toledo, E.M., de Magalhães, G.V.: A new stochastic cellular automata model for traffic flow simulation with drivers’ behavior prediction. J. Comput. Sci. 9, 51–56 (2015)

    Article  Google Scholar 

  12. Boccara, N., Fuks, H., Zeng, Q.: Car accidents and number of stopped cars due to road blockage on a one-lane highway. J. Phys. A: Math. General 30(10), 3329 (1997)

    Article  MathSciNet  Google Scholar 

  13. Huang, D.W.: Exact results for car accidents in a traffic model. J. Phys. A: Math. General 31(29), 6167 (1998)

    Article  Google Scholar 

  14. Fukui, M., Ishibashi, Y.: Traffic flow in 1D cellular automaton model including cars moving with high speed. J. Phys. Soc. Jpn. 65(6), 1868–1870 (1996)

    Article  Google Scholar 

  15. Jiang, R., Jia, B., Wang, X.L., Wu, Q.S.: Dangerous situations in the velocity effect model. J. Phys. A: Math. General 37(22), 5777 (2004)

    Article  MathSciNet  Google Scholar 

  16. Moussa, N.: Car accidents in cellular automata models for one-lane traffic flow. Phys. Rev. E 68(3), 036127 (2003)

    Article  Google Scholar 

  17. Bentaleb, K., Lakouari, N., Marzoug, R., Ez-Zahraouy, H., Benyoussef, A.: Simulation study of traffic car accidents in single-lane highway. Phys. A: Stat. Mech. Appl. 413, 473–480 (2014)

    Article  Google Scholar 

  18. Huang, D.W., Wu, Y.P.: Car accidents on a single-lane highway. Phys. Rev. E 63(2), 022301 (2001)

    Article  Google Scholar 

  19. Yang, X.Q., Ma, Y.Q.: Car accidents in the deterministic and nondeterministic Nagel-Schreckenberg models. Modern Phys. Lett. B 16(09), 333–344 (2002)

    Article  Google Scholar 

  20. Jiang, R., Wang, X.L., Wu, Q.S.: Dangerous situations within the framework of the Nagel-Schreckenberg model. J. Phys. A: Math. General 36(17), 4763 (2003)

    Article  MathSciNet  Google Scholar 

  21. Moussa, N.: Simulation study of traffic accidents in bidirectional traffic models. Int. J. Modern Phys. C 21(12), 1501–1515 (2010)

    Article  Google Scholar 

  22. Zhang, W., Yang, X.Q., Sun, D.P., Qiu, K., Xia, H.: Traffic accidents in a cellular automaton model with a speed limit zone. J. Phys. A: Math. General 39(29), 9127 (2006)

    Article  MathSciNet  Google Scholar 

  23. Marzoug, R., Echab, H., Lakouari, N., Ez-Zahraouy, H.: Car accidents at the intersection with speed limit zone and open boundary conditions. In: El Yacoubi, S., Wąs, J., Bandini, S. (eds.) ACRI 2016. LNCS, vol. 9863, pp. 303–311. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44365-2_30

    Chapter  Google Scholar 

  24. Madani, A., Moussa, N.: ICS: an interactive control system for simulating the probability of car accidents with object oriented paradigm and cellular automaton. Int. J. Comput. Sci. Eng. 3(8), 2965 (2011)

    Google Scholar 

  25. Gerwinski, M.: Krug: analytic approach to the critical density in cellular automata for traffic flow. Phys. Rev. E 60(1), 188 (1999)

    Article  Google Scholar 

Download references

Acknowledgement

Authors thank CNPq/PIBIC/PIBIT (UFF, LNCC) scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. P. Leal-Toledo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Almeida, I.M., Leal-Toledo, R.C.P., Toledo, E.M., Cacau, D.C., Magalhães, G.V.P. (2018). Drivers’ Behavior Effects in the Occurrence of Dangerous Situations Which May Lead to Accidents. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds) Cellular Automata. ACRI 2018. Lecture Notes in Computer Science(), vol 11115. Springer, Cham. https://doi.org/10.1007/978-3-319-99813-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99813-8_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99812-1

  • Online ISBN: 978-3-319-99813-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics