Skip to main content

First Order Versus Monod Kinetics in Numerical Simulation of Biofilms in Porous Media

  • Conference paper
  • First Online:
Recent Advances in Mathematical and Statistical Methods (AMMCS 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 259))

Abstract

We study a system of partial differential equations that model a macroscopic porous medium biofilm reactor. Solutions to the system are calculated numerically using the second order Uniformly accurate Central Scheme. We investigate and compare two different growth rate functions, first order and Monod kinetics. Although the reactor quickly becomes substrate limiting, a first order approximation of Monod kinetics leads to estimation errors in the reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbas, F., Eberl, H.: Investigation of the role of mesoscale detachment rate expressions in a macroscale model of a porous medium biofilm reactor. Int. J. Biomath. Biostats. 2(1), 123–143 (2013)

    MATH  Google Scholar 

  2. Abbas, F., Sudarsan, R., Eberl, H.J.: Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates. Math. Biosc. Eng. 9(2), 215–239 (2012)

    Article  MathSciNet  Google Scholar 

  3. Burden, R.L., Faires, J.D.: Numerical Analysis. Brooks/Cole Publishing, Boston, MA (2010)

    MATH  Google Scholar 

  4. Chapra, S.C., Canale, R.P.: Numerical Methods for Engineers, 6th edn. McGraw-Hill, New York, NY (2010)

    Google Scholar 

  5. Corapcioglu, M.Y. (ed.): Advances in Porous Media, vol. 3. Elsevier, Amsterdam, The Netherlands (1993)

    Google Scholar 

  6. Epperson, J.F.: An Introduction to Numerical Methods and Analysis. Wiley, New York (2002)

    MATH  Google Scholar 

  7. Gaebler, H.J., Eberl, H.J.: A simple model of biofilm growth in a porous medium that accounts for detachment and attachment of suspended biomass and their contribution to substrate degradation. Eur. J. Appl. Math. (2018). https://doi.org/10.1017/S0956792518000189

  8. Horn, H., Lackner, S.: Modeling of biofilm systems: a review. Adv. Biochem. Eng. Biotechnol. 146, 53–76 (2014)

    Google Scholar 

  9. Liotta, S.F., Romano, V., Russo, G.: Central schemes for balance laws of reaction type. SIAM. J. Num. An. 38(4), 1337–1356 (2000)

    Article  Google Scholar 

  10. Logan, J.D.: Transport Modeling in Hydrogeochemical Systems. Springer, New York, NY (2000)

    MATH  Google Scholar 

  11. Mašić, A., Eberl, H.J.: Persistence in a single species CSTR model with suspended flocs and wall attached biofilms. Bull. Math. Biol. 75(5), 1001–1026 (2012)

    Article  MathSciNet  Google Scholar 

  12. Mašić, A., Eberl, H.J.: On optimization of substrate removal in a bioreactor with wall attached and suspended bacteria. Math. Biosci. Eng. 11(5), 1139–1166 (2014)

    Article  MathSciNet  Google Scholar 

  13. Muslu, Y.: Mass transfer and substrate utilization in biofilm reactors. J. Chem. Tech. Biotechnol. 57, 127–135 (1993)

    Article  Google Scholar 

  14. Rittmann, B.E., McCarty, P.L.: Environmental Biotechnology: Principles and Applications. McGraw-Hill, Boston, MA (2001)

    Google Scholar 

  15. Smith, H.L., Waltman, P.: The Theory of the Chemostat: Dynamics of Microbial Competition. Cambridge University Press, New York, NY (1995)

    Book  Google Scholar 

  16. Wanner, O., Eberl, H.J., Morgenroth, E., Noguera, D.R., Picioreanu, C., Rittmann, B.E., van Loosdrecht, M.: Mathematical Modeling of Biofilms. IWA Publishing, London, UK (2006)

    Google Scholar 

  17. Wanner, O., Gujer, W.: A multispecies biofilm model. Biotechnol. Bioeng. 28, 314–386 (1986)

    Article  Google Scholar 

  18. Williamson, K., McCarty, P.L.: A model of substrate utilization by bacterial films. J. Water Pollut. Control Fed. 48(1), 9–24 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry J. Gaebler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaebler, H.J., Eberl, H.J. (2018). First Order Versus Monod Kinetics in Numerical Simulation of Biofilms in Porous Media. In: Kilgour, D., Kunze, H., Makarov, R., Melnik, R., Wang, X. (eds) Recent Advances in Mathematical and Statistical Methods . AMMCS 2017. Springer Proceedings in Mathematics & Statistics, vol 259. Springer, Cham. https://doi.org/10.1007/978-3-319-99719-3_32

Download citation

Publish with us

Policies and ethics